Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was den Knochen so stabil macht - Werkstoffe nach dem Vorbild der Natur

15.10.2004


Mit der offiziellen Bildung einer interdisziplinären Arbeitsgruppe "Biologische Nanowerkstoffe" aus Wissenschaftlern und Studenten der Martin-Luther-Universität werden - nachdem bereits jahrelang auf diesem Gebiet geforscht wird - neue Wege zum nanoskopischen Konstruieren von Werkstoffen nach dem Vorbild der Natur gesucht.


Beim Laufen, Lasten heben, Sport treiben oder tanzen denken die Menschen kaum an die Belastungen, denen ihre Knochen permanent ausgesetzt sind. Wie relativ selten sind die Fälle, in denen das Baumaterial Knochen versagt - sei es durch Überbeanspruchung bei einem Unfall oder durch Erkrankungen bzw. Veränderungen im höheren Lebensalter. Wie werden die herausragenden mechanischen Eigenschaften, die die Stütz- und Schutzfunktionen der Knochen gewährleisten, in der Natur realisiert? Welche Veränderungen der Knochenstruktur sind verantwortlich dafür, dass die Stabilität der Knochen bei Erkrankungen, zum Beispiel bei Osteoporose, so dramatisch abnehmen kann?

An diesen Fragen wird seit Jahren geforscht. Nunmehr soll im Rahmen eines Landesprojekts an der Martin-Luther-Universität Halle-Wittenberg offiziell eine aus Wissenschaftlern und Studenten zusammengesetzte interdisziplinäre Arbeitsgruppe "Biologische Nanowerkstoffe" gebildet werden. Physiker, Ingenieure und Chemiker arbeiten dabei mit Orthopäden der Klinik und Poliklinik für Orthopädie und Physikalische Medizin zusammen.


Jeder kennt den schönen Glanz des Perlmutt", so Arbeitsgruppenleiter Prof. Dr. Goerg H. Michler. "Dieser ist jedoch nur ein hübscher Nebeneffekt einer Struktur, welche die mechanische Integrität der Muschel gewährleistet. Erst im Elektronenmikroskop zeigt sich, dass eine beeindruckende Ordnung und Regelmäßigkeit in der Anordnung der "Baustoffe" vorliegt."

Knochen und Perlmutt sind ganz verschiedene, wunderbare Beispiele für biologische "Werkstoffe", deren Strukturen optimal an die im Organismus zu erfüllenden mechanischen Aufgaben angepasst sind. Diesen Biomaterialien ist gemein, dass die Kombination einer mineralischen Hartphase mit einer organischen Weichphase einen Verbund ergibt, bei dem aus biomechanischer Sicht optimale Materialkennwerte realisiert werden. Erstaunlich sind im Besonderen die extrem hohen Anteile an harter, mineralischer Substanz. Während der Anteil der Mineralkomponente Hydroxylapatit (HAp) im Knochen ungefähr 43% ausmacht, besteht das Perlmutt einer Muschel zu 95% aus Kalziumkarbonat (CaCO3). Beim Perlmutt wird durch eine komplizierte Anordnung von plättchenförmigen CaCO3-Kristalliten eine Mikrolaminat-Struktur aufgebaut, bei welcher die organische Matrix (viel effektiver als Mörtel in einer Ziegelmauer) nur noch als extrem dünne Schicht zwischen den Kristallplättchen auftritt.

Betrachtet man den Knochen in materialwissenschaftlicher Sichtweise als einen biologisch synthetisierten Nanokompositwerkstoff, so gibt er bei geringem Materialaufwand in Bezug auf Festigkeit und elastisches Verhalten Eigenschaftswerte vor, die von technischen Werkstoffen bis heute nicht erreicht werden. Wichtigste Determinante der hohen mechanischen Widerstandfähigkeit bei geringem Gewicht ist der hohe Füllungsgrad einer sehr flexiblen organischen Fasermatrix mit mineralischen Feststoffen - den Nanokristallen aus Hydroxylapatit. Dadurch erreicht der Hybridwerkstoff Festigkeiten und Zähigkeiten, welche die Kennwerte der einzelnen Komponenten weit übertreffen. Vergleichbare Komposite sind bis heute nicht synthetisch herstellbar. Ganz wesentlich ist, dass diese Hybride nur dadurch funktionieren, weil eine komplizierte Strukturierung auf der Ebene von 5 bis 500 nm erfolgt. Ist diese nicht mehr gegeben, versprödet das Material.

"Nun ist gerade eine solche gleichzeitige Steigerung von Steifigkeit, Festigkeit und Zähigkeit von Werkstoffen eine der wesentlichen Herausforderungen an die modernen Materialwissenschaften", weiß der Wissenschaftler. "Derartige synergetische Effekte, wie sie in der Natur seit Jahrmillionen auf eindrucksvolle Weise genutzt werden, könnten zu Werkstoffen mit völlig neuen Eigenschaften führen. Gelänge es, die Wechselwirkungen zwischen Matrix und mineralischem Feststoffanteil zu entschlüsseln und auf die Herstellung polymerer Komposite zu übertragen, ließen sich Nanowerkstoffe von heute unerreichter mechanischer Belastbarkeit und Zähigkeit erzeugen. Solche Werkstoffe eröffneten nicht nur den Zugang zu neuen, hochbelastbaren Implantatmaterialien, sondern auch zu neuen technischen Polymeren für Fahrzeugbau, Luft- und Raumfahrt" und vieles andere mehr."

Diesen Herausforderungen - die Aufklärung der eigenschaftsbestimmenden Strukturen des Knochens und der Übertragung solcher Strukturen auf neue Materialien - will sich das Team um Professor Michler stellen. Der Schlüssel zum Erfolg liegt in der Kombination verschiedener mikro- und nanoanalytischer Techniken, die am Fachbereich Ingenieurwissenschaften, in der Physik und in der Medizinischen Fakultät der Universität etabliert sind: Akustische Rastermikroskopie (SAM) und registrierende Ultramikrohärte (UMH) ermöglichen die Messung mechanischer Eigenschaften (z.B. Elastizitätsmodul) im Mikrometerbereich, während energiefilternde Transmissionselektronenmikroskopie (EFTEM), atmosphärische Rasterelektronenmikroskopie (ESEM) und Rasterkraftmikroskopie (SFM) die Morphologie sowie die mikromechanischen Prozesse der entsprechenden Probenbereiche bis in den Bereich einiger Nanometer erfassen können.

Kontakt:

Prof. Dr. rer. nat. habil. Goerg H. Michler
Martin-Luther-Universität Halle-Wittenberg
Fachbereich Ingenieurwissenschaften
Institut für Werkstoffwissenschaft
Professur Allgemeine Werkstoffwissenschaften

und

Vorstandsvorsitzender des IPW Institut für Polymerwerkstoffe e. V. an der Martin-Luther-Universität Halle-Wittenberg
Martin-Luther-Universität Halle-Wittenberg
Fachbereich Ingenieurwissenschaften
D-06099 Halle
Telefon: ++49 3461 462745
Fax: ++49 3461 462535
E-Mail: michler@iw.uni-halle.de

Ingrid Godenrath | idw
Weitere Informationen:
http://www.micromechanics.de
http://www.uni-halle.de

Weitere Berichte zu: Festigkeit Knochen Luft- und Raumfahrt Nanowerkstoff Perlmutt Zähigkeit

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Perowskit-Solarzellen: Es muss gar nicht perfekt sein
15.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Fraunhofer IMWS testet umweltfreundliche Mikroplastik-Alternativen in Kosmetikartikeln
11.01.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften