Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was den Knochen so stabil macht - Werkstoffe nach dem Vorbild der Natur

15.10.2004


Mit der offiziellen Bildung einer interdisziplinären Arbeitsgruppe "Biologische Nanowerkstoffe" aus Wissenschaftlern und Studenten der Martin-Luther-Universität werden - nachdem bereits jahrelang auf diesem Gebiet geforscht wird - neue Wege zum nanoskopischen Konstruieren von Werkstoffen nach dem Vorbild der Natur gesucht.


Beim Laufen, Lasten heben, Sport treiben oder tanzen denken die Menschen kaum an die Belastungen, denen ihre Knochen permanent ausgesetzt sind. Wie relativ selten sind die Fälle, in denen das Baumaterial Knochen versagt - sei es durch Überbeanspruchung bei einem Unfall oder durch Erkrankungen bzw. Veränderungen im höheren Lebensalter. Wie werden die herausragenden mechanischen Eigenschaften, die die Stütz- und Schutzfunktionen der Knochen gewährleisten, in der Natur realisiert? Welche Veränderungen der Knochenstruktur sind verantwortlich dafür, dass die Stabilität der Knochen bei Erkrankungen, zum Beispiel bei Osteoporose, so dramatisch abnehmen kann?

An diesen Fragen wird seit Jahren geforscht. Nunmehr soll im Rahmen eines Landesprojekts an der Martin-Luther-Universität Halle-Wittenberg offiziell eine aus Wissenschaftlern und Studenten zusammengesetzte interdisziplinäre Arbeitsgruppe "Biologische Nanowerkstoffe" gebildet werden. Physiker, Ingenieure und Chemiker arbeiten dabei mit Orthopäden der Klinik und Poliklinik für Orthopädie und Physikalische Medizin zusammen.


Jeder kennt den schönen Glanz des Perlmutt", so Arbeitsgruppenleiter Prof. Dr. Goerg H. Michler. "Dieser ist jedoch nur ein hübscher Nebeneffekt einer Struktur, welche die mechanische Integrität der Muschel gewährleistet. Erst im Elektronenmikroskop zeigt sich, dass eine beeindruckende Ordnung und Regelmäßigkeit in der Anordnung der "Baustoffe" vorliegt."

Knochen und Perlmutt sind ganz verschiedene, wunderbare Beispiele für biologische "Werkstoffe", deren Strukturen optimal an die im Organismus zu erfüllenden mechanischen Aufgaben angepasst sind. Diesen Biomaterialien ist gemein, dass die Kombination einer mineralischen Hartphase mit einer organischen Weichphase einen Verbund ergibt, bei dem aus biomechanischer Sicht optimale Materialkennwerte realisiert werden. Erstaunlich sind im Besonderen die extrem hohen Anteile an harter, mineralischer Substanz. Während der Anteil der Mineralkomponente Hydroxylapatit (HAp) im Knochen ungefähr 43% ausmacht, besteht das Perlmutt einer Muschel zu 95% aus Kalziumkarbonat (CaCO3). Beim Perlmutt wird durch eine komplizierte Anordnung von plättchenförmigen CaCO3-Kristalliten eine Mikrolaminat-Struktur aufgebaut, bei welcher die organische Matrix (viel effektiver als Mörtel in einer Ziegelmauer) nur noch als extrem dünne Schicht zwischen den Kristallplättchen auftritt.

Betrachtet man den Knochen in materialwissenschaftlicher Sichtweise als einen biologisch synthetisierten Nanokompositwerkstoff, so gibt er bei geringem Materialaufwand in Bezug auf Festigkeit und elastisches Verhalten Eigenschaftswerte vor, die von technischen Werkstoffen bis heute nicht erreicht werden. Wichtigste Determinante der hohen mechanischen Widerstandfähigkeit bei geringem Gewicht ist der hohe Füllungsgrad einer sehr flexiblen organischen Fasermatrix mit mineralischen Feststoffen - den Nanokristallen aus Hydroxylapatit. Dadurch erreicht der Hybridwerkstoff Festigkeiten und Zähigkeiten, welche die Kennwerte der einzelnen Komponenten weit übertreffen. Vergleichbare Komposite sind bis heute nicht synthetisch herstellbar. Ganz wesentlich ist, dass diese Hybride nur dadurch funktionieren, weil eine komplizierte Strukturierung auf der Ebene von 5 bis 500 nm erfolgt. Ist diese nicht mehr gegeben, versprödet das Material.

"Nun ist gerade eine solche gleichzeitige Steigerung von Steifigkeit, Festigkeit und Zähigkeit von Werkstoffen eine der wesentlichen Herausforderungen an die modernen Materialwissenschaften", weiß der Wissenschaftler. "Derartige synergetische Effekte, wie sie in der Natur seit Jahrmillionen auf eindrucksvolle Weise genutzt werden, könnten zu Werkstoffen mit völlig neuen Eigenschaften führen. Gelänge es, die Wechselwirkungen zwischen Matrix und mineralischem Feststoffanteil zu entschlüsseln und auf die Herstellung polymerer Komposite zu übertragen, ließen sich Nanowerkstoffe von heute unerreichter mechanischer Belastbarkeit und Zähigkeit erzeugen. Solche Werkstoffe eröffneten nicht nur den Zugang zu neuen, hochbelastbaren Implantatmaterialien, sondern auch zu neuen technischen Polymeren für Fahrzeugbau, Luft- und Raumfahrt" und vieles andere mehr."

Diesen Herausforderungen - die Aufklärung der eigenschaftsbestimmenden Strukturen des Knochens und der Übertragung solcher Strukturen auf neue Materialien - will sich das Team um Professor Michler stellen. Der Schlüssel zum Erfolg liegt in der Kombination verschiedener mikro- und nanoanalytischer Techniken, die am Fachbereich Ingenieurwissenschaften, in der Physik und in der Medizinischen Fakultät der Universität etabliert sind: Akustische Rastermikroskopie (SAM) und registrierende Ultramikrohärte (UMH) ermöglichen die Messung mechanischer Eigenschaften (z.B. Elastizitätsmodul) im Mikrometerbereich, während energiefilternde Transmissionselektronenmikroskopie (EFTEM), atmosphärische Rasterelektronenmikroskopie (ESEM) und Rasterkraftmikroskopie (SFM) die Morphologie sowie die mikromechanischen Prozesse der entsprechenden Probenbereiche bis in den Bereich einiger Nanometer erfassen können.

Kontakt:

Prof. Dr. rer. nat. habil. Goerg H. Michler
Martin-Luther-Universität Halle-Wittenberg
Fachbereich Ingenieurwissenschaften
Institut für Werkstoffwissenschaft
Professur Allgemeine Werkstoffwissenschaften

und

Vorstandsvorsitzender des IPW Institut für Polymerwerkstoffe e. V. an der Martin-Luther-Universität Halle-Wittenberg
Martin-Luther-Universität Halle-Wittenberg
Fachbereich Ingenieurwissenschaften
D-06099 Halle
Telefon: ++49 3461 462745
Fax: ++49 3461 462535
E-Mail: michler@iw.uni-halle.de

Ingrid Godenrath | idw
Weitere Informationen:
http://www.micromechanics.de
http://www.uni-halle.de

Weitere Berichte zu: Festigkeit Knochen Luft- und Raumfahrt Nanowerkstoff Perlmutt Zähigkeit

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie