Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was den Knochen so stabil macht - Werkstoffe nach dem Vorbild der Natur

15.10.2004


Mit der offiziellen Bildung einer interdisziplinären Arbeitsgruppe "Biologische Nanowerkstoffe" aus Wissenschaftlern und Studenten der Martin-Luther-Universität werden - nachdem bereits jahrelang auf diesem Gebiet geforscht wird - neue Wege zum nanoskopischen Konstruieren von Werkstoffen nach dem Vorbild der Natur gesucht.


Beim Laufen, Lasten heben, Sport treiben oder tanzen denken die Menschen kaum an die Belastungen, denen ihre Knochen permanent ausgesetzt sind. Wie relativ selten sind die Fälle, in denen das Baumaterial Knochen versagt - sei es durch Überbeanspruchung bei einem Unfall oder durch Erkrankungen bzw. Veränderungen im höheren Lebensalter. Wie werden die herausragenden mechanischen Eigenschaften, die die Stütz- und Schutzfunktionen der Knochen gewährleisten, in der Natur realisiert? Welche Veränderungen der Knochenstruktur sind verantwortlich dafür, dass die Stabilität der Knochen bei Erkrankungen, zum Beispiel bei Osteoporose, so dramatisch abnehmen kann?

An diesen Fragen wird seit Jahren geforscht. Nunmehr soll im Rahmen eines Landesprojekts an der Martin-Luther-Universität Halle-Wittenberg offiziell eine aus Wissenschaftlern und Studenten zusammengesetzte interdisziplinäre Arbeitsgruppe "Biologische Nanowerkstoffe" gebildet werden. Physiker, Ingenieure und Chemiker arbeiten dabei mit Orthopäden der Klinik und Poliklinik für Orthopädie und Physikalische Medizin zusammen.


Jeder kennt den schönen Glanz des Perlmutt", so Arbeitsgruppenleiter Prof. Dr. Goerg H. Michler. "Dieser ist jedoch nur ein hübscher Nebeneffekt einer Struktur, welche die mechanische Integrität der Muschel gewährleistet. Erst im Elektronenmikroskop zeigt sich, dass eine beeindruckende Ordnung und Regelmäßigkeit in der Anordnung der "Baustoffe" vorliegt."

Knochen und Perlmutt sind ganz verschiedene, wunderbare Beispiele für biologische "Werkstoffe", deren Strukturen optimal an die im Organismus zu erfüllenden mechanischen Aufgaben angepasst sind. Diesen Biomaterialien ist gemein, dass die Kombination einer mineralischen Hartphase mit einer organischen Weichphase einen Verbund ergibt, bei dem aus biomechanischer Sicht optimale Materialkennwerte realisiert werden. Erstaunlich sind im Besonderen die extrem hohen Anteile an harter, mineralischer Substanz. Während der Anteil der Mineralkomponente Hydroxylapatit (HAp) im Knochen ungefähr 43% ausmacht, besteht das Perlmutt einer Muschel zu 95% aus Kalziumkarbonat (CaCO3). Beim Perlmutt wird durch eine komplizierte Anordnung von plättchenförmigen CaCO3-Kristalliten eine Mikrolaminat-Struktur aufgebaut, bei welcher die organische Matrix (viel effektiver als Mörtel in einer Ziegelmauer) nur noch als extrem dünne Schicht zwischen den Kristallplättchen auftritt.

Betrachtet man den Knochen in materialwissenschaftlicher Sichtweise als einen biologisch synthetisierten Nanokompositwerkstoff, so gibt er bei geringem Materialaufwand in Bezug auf Festigkeit und elastisches Verhalten Eigenschaftswerte vor, die von technischen Werkstoffen bis heute nicht erreicht werden. Wichtigste Determinante der hohen mechanischen Widerstandfähigkeit bei geringem Gewicht ist der hohe Füllungsgrad einer sehr flexiblen organischen Fasermatrix mit mineralischen Feststoffen - den Nanokristallen aus Hydroxylapatit. Dadurch erreicht der Hybridwerkstoff Festigkeiten und Zähigkeiten, welche die Kennwerte der einzelnen Komponenten weit übertreffen. Vergleichbare Komposite sind bis heute nicht synthetisch herstellbar. Ganz wesentlich ist, dass diese Hybride nur dadurch funktionieren, weil eine komplizierte Strukturierung auf der Ebene von 5 bis 500 nm erfolgt. Ist diese nicht mehr gegeben, versprödet das Material.

"Nun ist gerade eine solche gleichzeitige Steigerung von Steifigkeit, Festigkeit und Zähigkeit von Werkstoffen eine der wesentlichen Herausforderungen an die modernen Materialwissenschaften", weiß der Wissenschaftler. "Derartige synergetische Effekte, wie sie in der Natur seit Jahrmillionen auf eindrucksvolle Weise genutzt werden, könnten zu Werkstoffen mit völlig neuen Eigenschaften führen. Gelänge es, die Wechselwirkungen zwischen Matrix und mineralischem Feststoffanteil zu entschlüsseln und auf die Herstellung polymerer Komposite zu übertragen, ließen sich Nanowerkstoffe von heute unerreichter mechanischer Belastbarkeit und Zähigkeit erzeugen. Solche Werkstoffe eröffneten nicht nur den Zugang zu neuen, hochbelastbaren Implantatmaterialien, sondern auch zu neuen technischen Polymeren für Fahrzeugbau, Luft- und Raumfahrt" und vieles andere mehr."

Diesen Herausforderungen - die Aufklärung der eigenschaftsbestimmenden Strukturen des Knochens und der Übertragung solcher Strukturen auf neue Materialien - will sich das Team um Professor Michler stellen. Der Schlüssel zum Erfolg liegt in der Kombination verschiedener mikro- und nanoanalytischer Techniken, die am Fachbereich Ingenieurwissenschaften, in der Physik und in der Medizinischen Fakultät der Universität etabliert sind: Akustische Rastermikroskopie (SAM) und registrierende Ultramikrohärte (UMH) ermöglichen die Messung mechanischer Eigenschaften (z.B. Elastizitätsmodul) im Mikrometerbereich, während energiefilternde Transmissionselektronenmikroskopie (EFTEM), atmosphärische Rasterelektronenmikroskopie (ESEM) und Rasterkraftmikroskopie (SFM) die Morphologie sowie die mikromechanischen Prozesse der entsprechenden Probenbereiche bis in den Bereich einiger Nanometer erfassen können.

Kontakt:

Prof. Dr. rer. nat. habil. Goerg H. Michler
Martin-Luther-Universität Halle-Wittenberg
Fachbereich Ingenieurwissenschaften
Institut für Werkstoffwissenschaft
Professur Allgemeine Werkstoffwissenschaften

und

Vorstandsvorsitzender des IPW Institut für Polymerwerkstoffe e. V. an der Martin-Luther-Universität Halle-Wittenberg
Martin-Luther-Universität Halle-Wittenberg
Fachbereich Ingenieurwissenschaften
D-06099 Halle
Telefon: ++49 3461 462745
Fax: ++49 3461 462535
E-Mail: michler@iw.uni-halle.de

Ingrid Godenrath | idw
Weitere Informationen:
http://www.micromechanics.de
http://www.uni-halle.de

Weitere Berichte zu: Festigkeit Knochen Luft- und Raumfahrt Nanowerkstoff Perlmutt Zähigkeit

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Clevere Folien voller Quantenpunkte
27.03.2017 | Technische Universität Chemnitz

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie

Chlamydien: Wie Bakterien das Ruder übernehmen

28.03.2017 | Biowissenschaften Chemie

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie