Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ionenstrahlen bohren Nano-Löcher

06.09.2004


Wissenschaftlern im Forschungszentrum Rossendorf (FZR) in Dresden ist es gelungen, mit einem sehr fein gebündelten Ionenstrahl ein besonders kleines Loch in die winzige Spitze eines Rasterkraftmikroskops zu bohren. Mit dieser "Lochblende" sollen dann einzelne Ionen (geladene Teilchen) gezielt auf eine Materialoberfläche gelenkt werden. So könnten einzelne Atome eines beliebigen chemischen Elements nanometergenau in einem Material vergraben ("implantiert") werden, wodurch sich die physikalischen Eigenschaften des Materials verändern lassen. Das Gemeinschaftsprojekt mit der Ruhr-Universität Bochum sowie der Universität Kassel ist ein wesentlicher Beitrag zur Grundlagenforschung für den Quantencomputer der Zukunft.


Nano-Lochblende


FIB-Anlage



Materialien auf atomarer Ebene gezielt bearbeiten und verändern zu können, ist ein lange gehegter Wunsch vieler Naturwissenschaftler. Derartige Nano-Technologien unterscheiden sich von herkömmlichen Technologien neben der Miniaturisierung auch dadurch, dass bei Nano-Strukturen neue physikalische Wirkprinzipien, die so genannten Quanteneffekte, auftreten. Die revolutionären und heute teilweise schon Realität gewordenen Technologien auf der Nanometerskala führen zu noch kleineren Bauelemente, Quantenbauelemente genannt, mit denen u. a. schnellere elektronische Bauelemente oder neue Sensoren entwickelt werden können. Zugleich eröffnen sie aber auch neue Möglichkeiten in Gebieten wie etwa der Optik oder der Medizintechnik.



Sachsens Staatsminister für Wissenschaft und Kunst, Dr. Matthias Rößler, zeigte sich am vergangenen Freitag, 3.9.2004, bei der Vorstellung der Ionenstrahl-Anlage für die Nano-Forschungen im FZR sehr beeindruckt: "Damit haben wir das Tor zur übernächsten Generation der Nanoelektronik aufgestoßen, auch wenn die großtechnische Anwendung dieser Nanoelektronik noch etwas Zeit braucht. Die Nanotechnologie gehört bereits heute weltweit zu den Wachstums- und Schlüsseltechnologien. Es werden beispielsweise Kleinstbaulemente entstehen, die 1000mal kleiner sind als die gängigen aus der Mikroelektronik."

Ein ideales Instrument zur Untersuchung und Entwicklung von Nano-Technologien ist der fokussierte Ionenstrahl. Dies ist ein stark gebündelter Strahl geladener und beschleunigter Atome. Hierfür werden im FZR beispielsweise Ionen der Elemente Kobalt, Gold, Gallium oder Silizium benutzt, auf einen Strahldurchmesser von etwa 20-50 Nanometer (nm) gebündelt und wenige Nanometer bis einige 100 Nanometer in das Probenmaterial geschossen (ein Nanometer entspricht einem Millionstel Millimeter, also dem 50 Tausendstel eines Haardurchmessers oder vier bis fünf aneinander gereihten Atomen).

Damit ein beliebiger Ionenstrahl Modifikationen in der Größe von nur einem einzigen Atom in einem Material erzeugen kann - in der Fachsprache heißt der Vorgang "Einzel-Atom-Dotierung" - bedarf es eines besonderen technologischen Kniffs. Dieser besteht in der Verwendung einer "Lochblende", die von Dr. Lothar Bischoff im FZR in Kooperation mit der Ruhr-Universität Bochum und der Universität Kassel hergestellt wurde. Ausgangsmaterial hierfür ist die winzig-kleine Spitze eines Rasterkraftmikroskops (ein Rasterkraftmikroskop tastet eine Oberfläche mit dieser winzigen Spitze ab). In die pyramidenförmige Spitze aus Siliziumnitrid mit einem Radius von ca. 100 nm wurde mit dem fokussierten Ionenstrahl ein Loch von 50 nm gebohrt.

Die derartig präparierte Spitze wird neben ihrer Funktion als Nano-Lochblende gleichzeitig auch zur Bestimmung der Position der Einzel-Atom-Dotierung mit Hilfe des Rasterkraftmikroskop-Prinzips genutzt. Zur Bearbeitung von Fragestellungen der Nano-Technologie mit verschieden Ionen in der geforderten Präzision müssen alle Komponenten des Systems optimal eingestellt und abgestimmt sein.

"Viel Arbeit ist in den letzten Jahren allein in die Entwicklung neuer Ionenquellen geflossen, aber auch in die Verbesserung und Stabilisierung aller prozessrelevanten Parameter", sagt Lothar Bischoff. Er fügt hinzu: "Gruppen in den USA, in Japan und in Deutschland arbeiten auch mit dem fokussierten Ionenstrahl, doch sie können als Ionensorte vornehmlich nur Gallium einsetzen. Unser Vorsprung besteht in der Vielfalt der chemischen Elemente, mit denen wir arbeiten, sowie in den umfangreichen technologischen Optionen, die in die Anlage im FZR integriert wurden, wie z.B. Kühlung oder Heizung des Probenmaterials, Kompensation von Oberflächenladungen und die hochpräzise Probentischbewegung."

So gibt es viele Nano-Anwendungen, an denen derzeit im Rossendorfer Ionenstrahlzentrum geforscht wird. Dr. Bernd Schmidt, der zuständige Abteilungsleiter, greift eines von vielen Beispielen heraus und erläutert: "Wir können Nano-Drähte mit Hilfe des fokussierten Ionenstrahls herstellen. Dazu dotieren wir beispielsweise eine Silizium-Scheibe mit Kobaltionen. Wenn das Material anschließend aufgeheizt wird, wachsen die einzelnen Atome im Material vergraben zu einem Nano-Draht zusammen. Das Ergebnis sind Nano-Bauelemente, die nicht außerhalb, sondern tatsächlich schon im gewünschten Material hergestellt werden und somit leicht in mikroelektronische Schaltkreise integriert werden können. Das ist ein immenser Vorteil unserer Herangehensweise."

In den nächsten Jahren soll gerade zu diesem Thema der Nano-Elektronik dank der Projektfinanzierung durch die Deutsche Forschungsgemeinschaft (DFG) und in Kooperation mit regionalen Partnern aus der Elektronikindustrie intensiv geforscht werden. Jedoch spielen auch Forschungen zur Nano-Optik und zum Nano-Magnetismus eine wichtige Rolle im Rossendorfer Ionenstrahlzentrum. Als Beispiel soll im Bereich der Nano-Optik die Herstellung einer "Perlenschnur" aus metallischen Nanopartikeln mit dem fokussierten Ionenstrahl erwähnt werden. Derartige Strukturen sollen in zukünftigen Halbleiterchips als nanometrische Lichtleiter für den Transport optischer Informationen verwendet werden, um so die Kommunikationszeiten auf einem Chip deutlich zu verkürzen.

Ansprechpartner im FZR:

Dr. Lothar Bischoff
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260 - 2963, Email: l.bischoff@fz-rossendorf.de

Dr. Bernd Schmidt
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260 - 2726, Email: bernd.schmidt@fz-rossendorf.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fz-rossendorf.de

Weitere Berichte zu: Atom Ion Ionenstrahl Nanometer Rasterkraftmikroskop

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Granulare Materie blitzschnell im Bild

21.09.2017 | Verfahrenstechnologie

Hochpräzise Verschaltung in der Hirnrinde

21.09.2017 | Biowissenschaften Chemie

Überleben auf der Schneeball-Erde

21.09.2017 | Biowissenschaften Chemie