Schicht zwischen Isolatoren leitet wie ein Metall

Wissenschaftler an der Technischen Universität Delft haben festgestellt, dass die Grenzschicht zwischen zwei organischen Molekülen, die an sich Isolatoren sind, Strom praktisch wie ein Metall leitet. Die Forscher vermuten, dass dieser Effekt bei organischen Materialien, die in der Kunststoff-Elektronik verwendet werden, verbreitet auftreten dürfte.

„Das Phänomen könnte sehr wichtig sein“, meint daher Teamleiter Alberto Morpurgo gegenüber pressetext. Beispielsweise könnten organische Schaltkreise für besonders flexible Elektronik leicht zu verwirklichen sein.

Überraschend einfach ist, wie die Forscher die hohe Leitfähigkeit erreichen konnten. Sie haben zwei Kristalle aus unterschiedlichen organischen Molekülen – Tetrathiofulvalen (TTF) und Tetracyanoquinodimethan (TCNQ) – mechanisch in Kontakt gebracht. „Wir mussten sie nicht einmal zusammenpressen“, betont Morpurgo. Die Materialien haften von selbst aneinander und es entsteht eine weniger als zwei Nanometer dicke Grenzschicht, die außergewöhnlich gut Strom leitet und sich dabei praktisch wie ein Metall verhält. Unter anderem sinkt der elektrische Widerstand mit der Temperatur. Der bei TTF und TCNQ beobachtete Effekt dürfte auch bei vielen anderen organischen Materialpaaren auftreten, so die Forscher.

„Derzeit ist das sehr aufregende Grundlagenforschung“, betont Morpurgo. Die praktischen Auswirkungen könnten aber weitreichend sein, denn organische Moleküle sind gängige Werkstoffe in der Kunststoff-Elektronik, beispielsweise in biegsamen Displays oder flexiblen Solarzellen. Transistoren könnten komplett aus Molekülen gefertigt werden und auch gänzlich ohne metallische Kontakte auskommen, sieht Morpurgo eine potenzielle Anwendung. Die Herstellung könnte sich als einfach erweisen und die Flexibilität von elektronischen Elementen insgesamt verbessert werden, vermutet der Wissenschaftler.

Die Arbeit der Forscher wurde vom Journal Nature Materials vorab online veröffentlicht. In einem kommentierenden Beitrag bestätigen an der Universität Augsburg tätige Wissenschaftler das Potenzial der Entdeckung. An derartige Grenzflächen könnten interessante physikalische Eigenschaften wie beispielsweise Supraleitung erzielt werden. Besonders interessant sei die Möglichkeit, neue Klassen organischer Elektronik zu erschließen, die mit bisherigen Techniken nicht verwirklicht werden konnten.

Media Contact

Thomas Pichler pressetext.deutschland

Weitere Informationen:

http://home.tudelft.nl/en

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Mikrobiom verändert sich dynamisch und begünstigt wichtige Funktionen für den Wirt

Ein interdisziplinäres Forschungsteam des Kieler SFB 1182 untersucht am Beispiel von Fadenwürmern, welche Prozesse die Zusammensetzung des Mikrobioms in Wirtslebewesen steuern. Alle vielzelligen Lebewesen – von den einfachsten tierischen und…

Wasser im Boden – genaue Daten für Landwirtschaft und Klimaforschung

Die PTB präsentiert auf der Woche der Umwelt, wie sich die Bodenfeuchte mithilfe von Neutronenstrahlung messen lässt. Die Bodenfeuchte hat nicht nur Auswirkungen auf die Landwirtschaft, sondern ist als Teil…

Bioreaktor- und Kryotechnologien für bessere Wirkstofftests mit humanen Zellkulturen

Medizinische Wirkstoffforschung… Viele Neuentwicklungen von medizinischen Wirkstoffen scheitern, weil trotz erfolgreicher Labortests mit Zellkulturen starke Nebenwirkungen bei Probanden auftreten. Dies kann passieren, wenn zum Beispiel die verwendeten Zellen aus tierischem…

Partner & Förderer