Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Antireflex-Beschichtungen ermöglichen großflächige holographische Displays

11.05.2015

Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP stellt auf der SID Display Week, 2. – 4. Juni 2015, in San José/USA eine Beschichtung vor, die benötigt wird, um den Durchmesser eines Laserstrahls um mehr als das Hundertfache aufzuweiten. Mit Hilfe dieser Beschichtung können in Zukunft Hintergrundbeleuchtungen für holographische Displays realisiert werden.

Wäre es nicht aufregend, wenn man mitten im Film sitzen würde, ohne lästige 3D-Brillen auf der Nase zu haben? Aber nicht nur für Fernsehfans wären holographische Displays ein Riesenfortschritt: Mediziner könnten räumliche Bilder aus dem Körperinneren anschauen und dabei Bewegungen von Organen im Detail betrachten.


Großflächige Präzisionsbeschichtungen für optische Anwendungen

Fraunhofer FEP

Die Dresdner Firma SeeReal Technologies GmbH arbeitet an solchen Displays. Holographische Displays nutzen bestimmte Eigenschaften von Laserlicht zur vollständig dreidimensionalen Darstellung von Bildern. Dafür ist eine Aufweitung des Laserstrahls auf Displaygröße notwendig.

Man kann sich leicht vorstellen, dass ein Laserstrahl mit dem Durchmesser eines Fernsehdisplays nur schwer zu realisieren ist. Eine Möglichkeit auf klassischem Weg wären große Linsensysteme, die aber nicht nur klobig, sondern auch aufwändig herzustellen und teuer sind.

Wissenschaftler vom Fraunhofer FEP haben nun in einem gemeinsamen Projekt mit SeeReal Technologies Beschichtungen entwickelt, bei denen Laser geringerer Leistungsklassen und Abmessungen eine Ausleuchtung in Displaygröße ermöglichen.

Der Laser wird unter einem sehr flachen Winkel (hier 5°, bzw. 85° zum Lot) auf eine Glasscheibe eingestrahlt. Ähnlich wie sich der Schatten eines Menschen in der untergehenden Sonne verlängert und sich damit seine projizierte Fläche auf der Erde vergrößert, vergrößert sich auch der Durchmesser des Laserstrahls. Aus einem kleinen Punkt wird eine langgezogene Ellipse.

In einem zweiten Schritt trifft die langgezogene Ellipse erneut unter 5° auf eine zweite Scheibe, wobei die Ellipse um die andere Richtung, die „kurze Achse“, wieder zu einem Kreis gestreckt wird. Dieser Kreis hat dann einen ausreichend großen Durchmesser, um den ganzen Bildschirm auszuleuchten.

Leuchtet man mit einem Laser jedoch unter einem solchen flachen Winkel auf eine unbeschichtete Scheibe, werden ca. 73 % des Strahles reflektiert. Bei zwei „Ausdehnungsschritten“ würden über 90 % der ursprünglichen Intensität verloren gehen!

„Wir haben eine Anti-Reflex-Beschichtung entwickelt, die den Anteil des transmittierten Lichts deutlich erhöht.“, erklärt Dr. Daniel Glöß, Abteilungsleiter für dynamische Beschichtungen im Bereich Präzisionsbeschichtung des Fraunhofer FEP.

„Mittels Sputtertechnologie werden dünne Schichten auf dem Glas abgeschieden. Diese bestehen abwechselnd aus zwei verschiedenen Materialien unterschiedlicher optischer Dichte. Durch Vielfach-Schichtsysteme können auch komplizierte optische Funktionen erzielt werden, die zum Beispiel nur bestimmte Farben des Lichts durchlassen und andere reflektieren.“

Mit seiner neuen Präzisionsbeschichtungsanlage PreSensLine ist das Fraunhofer FEP für die hochpräzise Beschichtung von größeren Substraten bestens ausgerüstet. So konnten bereits funktionstüchtige Scheiben der Größe DIN A3 (ca. 300 × 400 mm² bzw. 28“ Bildschirmdiagonale) beschichtet werden. Die besondere Schwierigkeit ergibt sich aus der Kombination von extremen Anforderungen an die Präzision, Reproduzierbarkeit und Homogenität der Schichten auf dieser großen Fläche.

Wie bei bisherigen Farbfernsehgeräten sollen die Farbeindrücke auch bei holographischen Displays aus einer Mischung aus rot, grün und blau entstehen. Für die Anti-Reflex-Beschichtung werden bei diesem Demonstrator 24 Schichten benötigt. Die Schichtdicke aller 24 Schichten muss bis auf wenige Millionstel Millimeter (Nanometer) korrekt getroffen und über die gesamte Fläche konstant sein.

Das entspricht wenigen 100 Atomlagen, oder anders ausgedrückt: Würde man die beschichtete Scheibe auf die Größe eines Fußballfeldes vergrößern, dann entsprächen die erlaubten Toleranzen der einzelnen Schichtdicken etwa einem Hundertstel der Dicke eines Menschenhaares. Bereits geringfügig stärkere Abweichungen führen nicht mehr zur gewünschten Entspiegelung und die Bildqualität würde stark beeinträchtigt bzw. das Bild farbverzerrt erscheinen.

Die am Fraunhofer FEP gefertigten Anti-Reflex-Beschichtungen wurden in dem Demonstrator von SeeReal Technologies verwendet. Dort ist Holographie bereits Realität. Perspektivisches Ziel ist es, deutlich größere Displays im Quadratmeterbereich mit gleicher Präzision zu fertigen. Dafür ist das Fraunhofer FEP gut gerüstet. Es verfügt über modernste Anlagentechnik sowie das Know-How zur Herstellung anspruchsvoller Schichtsysteme und zur kundenspezifischen Entwicklung und Fertigung der benötigten Beschichtungskomponenten.

Erfahren Sie mehr zu unseren Arbeiten:

Daniel Glöß

Bidirectional Expansion of Collimated Laser Beam as Backlight for Holographic 3D Display
Vortrag Exhibitor Forum, Session 6: Innovative Display Technologies and Applications
Donnerstag, 4. Juni 2015 | 9:15 Uhr | Executive Ballroom 210

John Fahlteich

Roll-to-Roll Manufacturing of Functional Substrates and Encapsulation Films for Organic Electronics: Technologies and Challenges
Vortrag Symposium: 10.1 (Invited Paper),
Dienstag, 2. Juni 2015 | 14:00 – 14:20 Uhr | Ballroom 220C

Philipp Wartenberg

SVGA Full-Color Bidirectional OLED Microdisplay
Vortrag Symposium: 15.5 (Late-News Paper)
Dienstag, 2. Juni 2015 | 17:00 – 17:10 Uhr | Ballroom 220B

Manuela Junghähnel

Advanced Processing of ITO and IZO Thin Films on Flexible Glass
Poster Session: Display Manufacturing, P.65
Donnerstag, 4. Juni 2015 | 16:00 – 19:00 Uhr | Ballroom 220A

Susan Mühl

Optimized anodes for flexible large area OLEDs
Poster Session: OLEDs, P.133
Donnerstag, 4. Juni 2015 | 16:00 – 19:00 Uhr | Ballroom 220A

Pressekontakt:

Frau Annett Arnold

Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP | Phone +49 351 2586 452 | annett.arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Deutschland | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/2cY

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Weitere Berichte zu: Beschichtungen Displays Durchmesser Elektronik Ellipse FEP Laser Manufacturing OLEDs Plasmatechnik Symposium

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten