Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneidstoffe und Beschichtungen für schwerzerspanbare Werkstoffe

22.10.2009
Um den Anforderungen beim Zerspanen von exotischen Werkstoffen zu genügen, braucht man ein hochwarmfestes Hartmetallsubstrat und eine effiziente Kühlung während des Bearbeitungsprozesses. Aus diesem Grund sind Trägerwerkzeuge mit Hochdruck-Innenkühlung erste Wahl.

Es ist noch nicht lange her, da bezeichnete man Werkstoffe wie Titan, Superlegierungen und rostfreie Stähle als exotische Werkstoffe. Sie kamen nur wenig vor, waren extrem teuer und die Bearbeitung stellte manchen Produzenten vor fast unlösbare Herausforderungen. Inzwischen ist von der Zerspanung von Hightech Alloys, den exotischen Werkstoffen der nächsten Generation, die Rede. Es geht um neue Legierungsansätze bei Guss, Titan, Superlegierungen und Refraktärmetallen.

Energiespartrend führt zum verstärktem Einsatz von Hochleistungsmaterialien

Diese Werkstoffe sind nach wie vor sehr teuer, werden aber heutzutage immer mehr eingesetzt und gewinnen durch ihre Eigenschaften rasant an Bedeutung. Der Energiehunger der Welt verlangt Werkstoffe, die die extreme Leistungssteigerung energieerzeugender Anlagen mit sehr hohem Wirkungsgrad unterstützen. Die Entwicklung der Leistungsfähigkeit im Kraftwerkbau, in der Wehrtechnik, in der Luft- und Raumfahrt oder der Medizintechnik ist direkt von der Entwicklung dieser Werkstoffe abhängig. Aber auch der Trend, schlichtweg Energie zu sparen, führt zum vermehrten Einsatz von Hochleistungsmaterialien.

Exotische Werkstoffe wie Titan sind in der Bearbeitung um etwa den Faktor zehn schwieriger klassifiziert als klassische Stähle. Einer der Hauptgründe liegt in der sehr schlechten Wärmeleitfähigkeit. So wird bei der Bearbeitung von Titan nur etwa ein Viertel der entstehenden Wärme durch die Späne abgeführt, der Rest führt direkt zur Erwärmung des Werkzeugs.

Beim Zerspanen exotischer Werkstoffen sind Trägerwerkzeuge mit Innenkühlung die erste Wahl

Um bei diesen Anforderungen zu bestehen, braucht man ein hochwarmfestes Hartmetallsubstrat und eine effiziente Kühlung während der Bearbeitung. Das bedeutet den Einsatz von Kühlmittel in großen Mengen, am besten mit hohem Druck durch die Spindel direkt an die Schneidkanten des Werkzeugs, was auch den Späneabtransport begünstigt. Deshalb sind für das Zerspanen von exotischen Werkstoffen Trägerwerkzeuge mit Innenkühlung erste Wahl.

Eine weitere Konsequenz der schlechten Wärmeleitfähigkeit, beispielsweise von Ti-tanlegierungen, sind die hohen Temperaturen in den Werkzeugen, die unter anderem zu chemischen Reaktionen an der Oberfläche der Werkzeugschneide führen. Die von Ceratizit entwickelte Hyper-Coat-Beschichtung wirkt dort als effizienter Schutz.

Bei massiver Kaltumformung neigt Titan zu starker Verfestigung, wobei die Zugfestigkeit sich verdreifacht und die Bruchdehnung sich um bis zu 90% verringert. Diese Verfestigungsneigung setzt dem Zerspanungsprozess einen signifikanten Widerstand entgegen, der die Schneidkanten leicht zum Ausbrechen bringt oder im Schneidstoff Zerrüttungserscheinungen hervorruft.

Titan atmet nach dem Schnittprozess auf

Eine Reduktion der Schnittkräfte durch möglichst positive und scharfe Schneiden bringt nur bis zu einem gewissen Punkt Abhilfe, weil die Schneiden, wenn die Ausgestaltung zu positiv ist, zu empfindlich werden. Die hohe Elastizität des Werkstoffs begründet eine Relaxation des Materials, die direkt nach dem Schnittprozess zu einem „Aufatmen“ des Titans führt, was besondere Anforderungen an die geometrische Freistellung der Schneidkante stellt.

Durch die extremen Eigenschaften von exotischen Werkstoffen ist meist nur eine langsame Bearbeitung, also mit niedrigen bis moderaten Schnittparametern, möglich. Die Bearbeitung ist somit sehr zeitaufwändig. Ein weiteres Merkmal ist die hohe Prozesssicherheit, die gewährleistet sein muss, denn Ausschussteile sind absolutes Tabu. Erstens handelt es sich vor allem in der Luftfahrtindustrie nicht selten um sehr große Werkstücke, deren Bearbeitung mehrere Tage in Anspruch nehmen kann, und zweitens entstehen sehr hohe Kosten, wenn große Werkstücke aus dem teuren Material nicht mehr verwendbar sind.

Bearbeitungsgeschwindigkeit bei Titan verdoppelt

Durch die lange Erfahrung auf dem Gebiet der Werkstoffwissenschaften, die sehr guten Kontakte in der Industrie, den Fokus auf schwer zu zerspanende Werkstoffe und das Know-how der Entwicklung und Anwendungstechnik hat Ceratizit sich als Spezialist für die Bearbeitung anspruchsvoller Werkstoffe etabliert. Durch Lösungen des Hartmetallexperten ist es zum Beispiel bei der Herstellung von Turbinenschaufeln aus Titan möglich, die Bearbeitungsgeschwindigkeit sogar zu verdoppeln.

Bei der Zrinski Tehnologija in Kroatien konnte man bei der Bearbeitung eines Titan-Werkstückes (3.7164, Durchmesser 21 mm, Länge 165 mm) mit einer Ceratizit-Lösung 130 Teile pro Schneidkante bearbeiten. Das sind mehr als doppelt so viele wie beim Konkurrenzprodukt, und das bei einer höheren Drehzahl der Spindel von 1400 statt 1000 min—1.

Schwer zerspanbare Werkstoffe wie Nickel-Basis-Legierungen gewinnen ebenfalls immer mehr an Bedeutung. Abgesehen von Anwendungen in der Luft- und Raumfahrt sowie der Automobilindustrie steigt der Bedarf an solchen Werkstoffen, insbesondere für Großbauteile in der Energieversorgung, beispielsweise Hoch- und Mitteldruckturbinen oder Hochdruckverdichter.

Hyper-Coat-Beschichtungen brachten den Durchbruch

Ceratizit trägt dieser Entwicklung Rechnung, indem neuartige Schneidstoffsorten mit speziellen Geometrien für die Schwerzerspanung von Hochleistungswerkstoffen gepaart wurden. Dabei brachten die Produkte mit Hyper-Coat-Beschichtungen den Durchbruch. Entwickelt wurden zwei Sorten, die diesen besonderen Anwendungsbereich großflächig abdecken. Bei der ersten Sorte, CTP5620, handelt sich um eine Feinkornsorte mit hoher Abrasionsbeständigkeit, sowohl in der Schicht als auch im Substrat. Die zweite Sorte, CTP5630, ist eine hochwarmfeste, zähe Variante, die insbesondere im instabilen Zerspanungsumfeld eine hohe Zuverlässigkeit bietet.

Neben Schneidstoff und Beschichtung spielt die richtige Schneidengeometrie eine mindestens ebenso bedeutende Rolle. So werden bei dieser Bearbeitung sehr gute Oberflächen und optimale Spanbildungen durch die spezielle Spanleitstufe beziehungsweise Schneidkante erzielt. Die für das Schäldrehen obligatorischen Stützfasen wurden für diese Anwendung angepasst, so dass ein vibrationsfreies und prozesssicheres Zerspanen gewährleistet ist.

Stangen mit Durchmessern größer als 200 mm prozesssicher bearbeiten

Die Entwicklungen wurden auf dem weltweit sehr gängigen Plattentyp YNUF 201220 angebracht. Dieser findet sowohl als Singleplatte bei kleineren Durchmessern als auch als Schlichtplatte im Tandemsystem bei großen Stangendurchmessern Anwendung. Die Bearbeitung von Nickel- und Nickel-Basis-Legierungen verlangt sehr niedrige Schnittgeschwindigkeiten von 15 bis 50 m/min bei Vorschüben von etwa 4 bis 14 mm pro Umdrehung. Höhere Schnittgeschwindigkeiten würden die Vibrationsneigung unterstützen und gegebenenfalls zu Plattenbruch oder zu Beschädigungen des Werkstücks führen.

Mit der neuen Werkzeuglösung können außer den kleineren Durchmessern von 20 bis 60 mm nun auch Stangen mit Durchmessern größer als 200 mm prozesssicher bearbeitet werden. Der charakteristische Leistungsvorteil des Schäldrehens im Vergleich zur klassischen Drehbearbeitung steht damit auch den Herstellern von großen Stangen dieser Werkstoffklasse zur Verfügung.

Dr. Uwe Schleinkofer ist Leiter Entwicklung Zerspanung bei der Ceratizit Austria GmbH, in A-6600 Reutte.

Uwe Schleinkofer | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/umformtechnik/articles/235304/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Luftturbulenzen durch Flugzeuge bald beherrschbar
08.12.2017 | Universität Rostock

nachricht Ein MRT für Forscher im Maschinenbau
23.11.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie