Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Sicherheit auf hoher See: Bewegungssimulator an Hamburgs TU erlaubt genauere Berechnungen

11.10.2012
Einer der weltweit größten Bewegungssimulatoren ist im Windkanal der Technischen Universität Hamburg-Harburg (TUHH) installiert worden.

Das Großgerät ermöglicht experimentelle Untersuchungen, die dazu dienen, Schiffe sicherer und energieeffizienter zu konstruieren. Zu diesem Zweck werden große Rumpfmodelle aus Kunststoff realitätsnahen Bedingungen wie auf hoher See ausgesetzt.


Ein Rumpfmodell im Bewegungssimulator des Windkanals an der TUHH.
Foto: TUHH/Jupitz


Voller Technik steckt das Rumpfmodell des Bewegungssimulators an der TUHH.
Foto: TUHH/Jupitz

Der Bewegungssimulator wurde im Rahmen eines vom Bundeswirtschaftsministerium mit knapp einer Millionen Euro finanzierten Forschungsvorhabens entwickelt und eröffnet neue Perspektiven im Schiffbau.

Zum ersten Mal kann das Verhalten moderner Schiffe mit ihren an Bug und Heck flacheren Schiffsböden genauer vorhergesagt werden. Die dabei gewonnenen Erkenntnisse werden sowohl für den Schiffsentwurf in den Werften als auch beim Manövrieren auf See eingesetzt. Bislang fehlten für moderne Schiffsformen diese durch solche Untersuchungen ermittelten wichtigen Daten. Die detaillierten Messungen sind zur Validierung von Ergebnissen aus der numerischen Simulation erforderlich.

„Hamburg und die Metropolregion haben eine lange Tradition und besondere Expertise in der maritimen Wirtschaft. Kluge Wissenschaft ist Voraussetzung für eine starke Wirtschaft. Hamburg steht hier unter anderem mit der Technischen Universität Hamburg-Harburg, die als einzige technische Universität in Deutschland ein grundständiges Schiffbaustudium anbietet, sehr gut da. Erstklassige Forschung braucht außer hochqualifizierten Wissenschaftlerinnen und Wissenschaftlern aber auch eine erstklassige Infrastruktur.

Der heute der Öffentlichkeit vorgestellte Bewegungssimulator ist hierfür ein weiterer anschaulicher Beleg.“ Dies sagte Hamburgs Senatorin für Wissenschaft und Forschung, Dr. Dorothee Stapelfeldt, heute anlässlich einer Pressekonferenz an der TUHH. Und der Vizepräsident für Forschung an der TUHH, Prof. Dr.-Ing. Jürgen Grabe, erklärte vor der Presse: „Unsere internationale Expertise im Schiffbau und generell auf dem Gebiet der maritimen Systeme wird mit diesem neuen Großgerät gestärkt. Gerade auch im Offshore-Bereich, der an der TUHH im Kompetenzfeld Green Technologies wachsende Bedeutung in der Forschung einnimmt, sind die Ergebnisse der Untersuchungen von großer Bedeutung. Zugleich ist der Bewegungssimulator ein gutes Beispiel für den wichtigen Beitrag der Forschung für die wirtschaftliche Entwicklung und den Wandel durch Wissenschaft.“

Passagier,- Container- und Ro-Pax-Schiffe

Erste Messungen mit dem Bewegungssimulator wurden bereits durchgeführt. Im Blickfeld dieser Untersuchungen standen Passagier,- Container- und Ro-Pax-Schiffe sowie im Offshore-Bau eingesetzte Unterwasserfahrzeuge und Hubschrauber-Landungen auf Errichterschiffen. „Dabei hat sich gezeigt, dass die bisher beim Bau von Schiffen verwendeten Koeffizienten Ergebnisse lieferten, die dazu geführt haben, die Rollbewegung von Schiffen zu unterschätzen,“ sagt Professor Moustafa Abdel-Maksoud, Leiter des Instituts für Fluiddynamik und Schiffstheorie. Je heftiger sich ein Schiff um seine Längsachse bewegt, also „rollt“, desto größer die Gefahr des Kenterns. Dies gefährdet Menschenleben, ganz abgesehen vom drohenden Verlust der Fracht bis hin zum Totalausfall des Schiffes. 10 000 Container gehen jährlich auf den Weltmeeren verloren. Das ist in Bezug auf die Gesamtmenge zwar ein vergleichsweise geringer Anteil, wenn jedoch ein Schiff die gesamte Fracht auf einmal verliert, entsteht ein großer Schaden für die Reederei und die Versicherungen.

Noch ist das Phänomen der gefährlichen Rollbewegung von Schiffen nicht vollständig erforscht. Als dafür besonders anfällig zeigen sich einige neuere Schiffsformen beispielsweise Containerschiffe. Mit Hilfe des Bewegungssimulators im Windkanal können Rollbewegungen erstmals bezüglich ihrer strömungstechnischen Ursachen detaillierter untersucht und damit die Grundlagen für Computersimulationen verbessert werden. Diese bilden die theoretische Basis für den Entwurf von Schiffen.

Forschungsaufgabe: Messungen zur Dämpfung der Rollbewegung auf See

Ziel der Untersuchungen ist die Dämpfung der Rollbewegung. Die spezifische Form des Schiffsrumpfes einschließlich des Ruders und des Propellers erzeugt während der Bewegung des Schiffes ein charakteristisches Strömungsfeld im Wasser. Die besondere Herausforderung für die Wissenschaft besteht in der Beschreibung und Modellierung der starken Wirbelbildung, die bei einem rollenden Schiff durch Schlingerkiele und Ruder erzeugt wird. Die in die Strömung und besonders in die Wirbel übertragene Energie aus der Rollbewegung des Schiffes führt dabei gleichzeitig zu ihrer Reduzierung.

Die vom Schiffsrumpf in die Strömung übertragene Energie wird in einen Wellen- und Reibungsanteil getrennt. Mit Hilfe des Bewegungssimulators kann der Reibungsanteil und damit die Wirbelbildung erstmals separat untersucht werden. Im Windkanal wird das Strömungsfeld mittels optischer Verfahren visualisiert. Mit klassischen Verfahren werden die Ergebnisse vom Medium Luft auf das Medium Wasser übertragen. Der Wellenanteil wird in der Hamburger Schiffbauversuchsanstalt gemessen.

So funktioniert der Bewegungssimulator im Windkanal

Der am Institut für Fluiddynamik und Schiffstheorie installierte Bewegungssimulator erfüllt die speziellen kinematischen Anforderungen für schiffstechnische Untersuchungen: Im Luftstrom des Windkanals wird das Rumpfmodell von acht Seilen gehalten. Diese Seile sind jeweils an von kleinen Elektromotoren bewegten Schlitten befestigt. Durch eine gezielt gesteuerte Bewegung dieser Schlitten werden Wellenbewegungen wie auf hoher See nachgeahmt. Im Innern des Modells sind bis zu 48 Messkanäle untergebracht. Wie enorm genau die Steuerung der Schlittenbewegungen ist, belegt die Tatsache, dass eine zeitliche Verzögerung im Testablauf von nur einer Hundertstel Sekunde genügt, um Seile reißen zu lassen.

Die technischen Möglichkeiten des Systems bezüglich der Modellgröße, der Bewegungsamplituden und -frequenzen sind weltweit einmalig. Die Konstruktion, die Bewegungen in allen sechs Freiheitsgraden erlaubt, wurde mit der Universität Duisburg entwickelt und ermöglicht sowohl höhere Traglasten als auch eine stärkere Dynamik bei gleich dimensionierten Antrieben. Da die Seile nur vier Millimeter dünn sind, ist eine Störung der Strömung nur lokal begrenzt, was wiederum das Gesamtergebnis kaum beeinträchtigt So ist man in der Lage, die Gesamtmasse von 100 Kilogramm mit der gewünschten Dynamik zu bewegen.

Zahlen:
Windkanal:
42 Meter Länge
10,50 Meter Höhe
400 Kilowatt Leistung
5 bis 35 Meter pro Sekunde Windgeschwindigkeit
Bewegungssimulator
Messstrecke:
5,50 Meter Länge
3 Meter Breite
2 Meter Höhe
Grafik und Fotos vom Bewegungssimulator:
http://intranet.tu-harburg.de/aktuell/pressemitteilung.php3
Aktuelles Bildmaterial mit Fotos der Teilnehmer der heutigen Pressekonferenz stehen ab 13 Uhr zum Download gleichfalls unter oben genanntem Link zur Verfügung.

Für Rückfragen:

TU Hamburg
Institut für Fluiddynamik und Schiffstheorie
Prof. Dr.-Ing. Moustafa Abdel-Maksoud
Tel.: 040 / 42878-6053
E-Mail: m.abdel-maksoud@tuhh.de
TU Hamburg-Harburg
Pressesprecherin
Jutta Katharina Werner
Tel. 040 /42878-4321
mobil: 0173 245 9999
E-Mail: j.werner@tuhh.de

Jutta Katharina Werner | idw
Weitere Informationen:
http://www.tuhh.de/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften