Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Sicherheit auf hoher See: Bewegungssimulator an Hamburgs TU erlaubt genauere Berechnungen

11.10.2012
Einer der weltweit größten Bewegungssimulatoren ist im Windkanal der Technischen Universität Hamburg-Harburg (TUHH) installiert worden.

Das Großgerät ermöglicht experimentelle Untersuchungen, die dazu dienen, Schiffe sicherer und energieeffizienter zu konstruieren. Zu diesem Zweck werden große Rumpfmodelle aus Kunststoff realitätsnahen Bedingungen wie auf hoher See ausgesetzt.


Ein Rumpfmodell im Bewegungssimulator des Windkanals an der TUHH.
Foto: TUHH/Jupitz


Voller Technik steckt das Rumpfmodell des Bewegungssimulators an der TUHH.
Foto: TUHH/Jupitz

Der Bewegungssimulator wurde im Rahmen eines vom Bundeswirtschaftsministerium mit knapp einer Millionen Euro finanzierten Forschungsvorhabens entwickelt und eröffnet neue Perspektiven im Schiffbau.

Zum ersten Mal kann das Verhalten moderner Schiffe mit ihren an Bug und Heck flacheren Schiffsböden genauer vorhergesagt werden. Die dabei gewonnenen Erkenntnisse werden sowohl für den Schiffsentwurf in den Werften als auch beim Manövrieren auf See eingesetzt. Bislang fehlten für moderne Schiffsformen diese durch solche Untersuchungen ermittelten wichtigen Daten. Die detaillierten Messungen sind zur Validierung von Ergebnissen aus der numerischen Simulation erforderlich.

„Hamburg und die Metropolregion haben eine lange Tradition und besondere Expertise in der maritimen Wirtschaft. Kluge Wissenschaft ist Voraussetzung für eine starke Wirtschaft. Hamburg steht hier unter anderem mit der Technischen Universität Hamburg-Harburg, die als einzige technische Universität in Deutschland ein grundständiges Schiffbaustudium anbietet, sehr gut da. Erstklassige Forschung braucht außer hochqualifizierten Wissenschaftlerinnen und Wissenschaftlern aber auch eine erstklassige Infrastruktur.

Der heute der Öffentlichkeit vorgestellte Bewegungssimulator ist hierfür ein weiterer anschaulicher Beleg.“ Dies sagte Hamburgs Senatorin für Wissenschaft und Forschung, Dr. Dorothee Stapelfeldt, heute anlässlich einer Pressekonferenz an der TUHH. Und der Vizepräsident für Forschung an der TUHH, Prof. Dr.-Ing. Jürgen Grabe, erklärte vor der Presse: „Unsere internationale Expertise im Schiffbau und generell auf dem Gebiet der maritimen Systeme wird mit diesem neuen Großgerät gestärkt. Gerade auch im Offshore-Bereich, der an der TUHH im Kompetenzfeld Green Technologies wachsende Bedeutung in der Forschung einnimmt, sind die Ergebnisse der Untersuchungen von großer Bedeutung. Zugleich ist der Bewegungssimulator ein gutes Beispiel für den wichtigen Beitrag der Forschung für die wirtschaftliche Entwicklung und den Wandel durch Wissenschaft.“

Passagier,- Container- und Ro-Pax-Schiffe

Erste Messungen mit dem Bewegungssimulator wurden bereits durchgeführt. Im Blickfeld dieser Untersuchungen standen Passagier,- Container- und Ro-Pax-Schiffe sowie im Offshore-Bau eingesetzte Unterwasserfahrzeuge und Hubschrauber-Landungen auf Errichterschiffen. „Dabei hat sich gezeigt, dass die bisher beim Bau von Schiffen verwendeten Koeffizienten Ergebnisse lieferten, die dazu geführt haben, die Rollbewegung von Schiffen zu unterschätzen,“ sagt Professor Moustafa Abdel-Maksoud, Leiter des Instituts für Fluiddynamik und Schiffstheorie. Je heftiger sich ein Schiff um seine Längsachse bewegt, also „rollt“, desto größer die Gefahr des Kenterns. Dies gefährdet Menschenleben, ganz abgesehen vom drohenden Verlust der Fracht bis hin zum Totalausfall des Schiffes. 10 000 Container gehen jährlich auf den Weltmeeren verloren. Das ist in Bezug auf die Gesamtmenge zwar ein vergleichsweise geringer Anteil, wenn jedoch ein Schiff die gesamte Fracht auf einmal verliert, entsteht ein großer Schaden für die Reederei und die Versicherungen.

Noch ist das Phänomen der gefährlichen Rollbewegung von Schiffen nicht vollständig erforscht. Als dafür besonders anfällig zeigen sich einige neuere Schiffsformen beispielsweise Containerschiffe. Mit Hilfe des Bewegungssimulators im Windkanal können Rollbewegungen erstmals bezüglich ihrer strömungstechnischen Ursachen detaillierter untersucht und damit die Grundlagen für Computersimulationen verbessert werden. Diese bilden die theoretische Basis für den Entwurf von Schiffen.

Forschungsaufgabe: Messungen zur Dämpfung der Rollbewegung auf See

Ziel der Untersuchungen ist die Dämpfung der Rollbewegung. Die spezifische Form des Schiffsrumpfes einschließlich des Ruders und des Propellers erzeugt während der Bewegung des Schiffes ein charakteristisches Strömungsfeld im Wasser. Die besondere Herausforderung für die Wissenschaft besteht in der Beschreibung und Modellierung der starken Wirbelbildung, die bei einem rollenden Schiff durch Schlingerkiele und Ruder erzeugt wird. Die in die Strömung und besonders in die Wirbel übertragene Energie aus der Rollbewegung des Schiffes führt dabei gleichzeitig zu ihrer Reduzierung.

Die vom Schiffsrumpf in die Strömung übertragene Energie wird in einen Wellen- und Reibungsanteil getrennt. Mit Hilfe des Bewegungssimulators kann der Reibungsanteil und damit die Wirbelbildung erstmals separat untersucht werden. Im Windkanal wird das Strömungsfeld mittels optischer Verfahren visualisiert. Mit klassischen Verfahren werden die Ergebnisse vom Medium Luft auf das Medium Wasser übertragen. Der Wellenanteil wird in der Hamburger Schiffbauversuchsanstalt gemessen.

So funktioniert der Bewegungssimulator im Windkanal

Der am Institut für Fluiddynamik und Schiffstheorie installierte Bewegungssimulator erfüllt die speziellen kinematischen Anforderungen für schiffstechnische Untersuchungen: Im Luftstrom des Windkanals wird das Rumpfmodell von acht Seilen gehalten. Diese Seile sind jeweils an von kleinen Elektromotoren bewegten Schlitten befestigt. Durch eine gezielt gesteuerte Bewegung dieser Schlitten werden Wellenbewegungen wie auf hoher See nachgeahmt. Im Innern des Modells sind bis zu 48 Messkanäle untergebracht. Wie enorm genau die Steuerung der Schlittenbewegungen ist, belegt die Tatsache, dass eine zeitliche Verzögerung im Testablauf von nur einer Hundertstel Sekunde genügt, um Seile reißen zu lassen.

Die technischen Möglichkeiten des Systems bezüglich der Modellgröße, der Bewegungsamplituden und -frequenzen sind weltweit einmalig. Die Konstruktion, die Bewegungen in allen sechs Freiheitsgraden erlaubt, wurde mit der Universität Duisburg entwickelt und ermöglicht sowohl höhere Traglasten als auch eine stärkere Dynamik bei gleich dimensionierten Antrieben. Da die Seile nur vier Millimeter dünn sind, ist eine Störung der Strömung nur lokal begrenzt, was wiederum das Gesamtergebnis kaum beeinträchtigt So ist man in der Lage, die Gesamtmasse von 100 Kilogramm mit der gewünschten Dynamik zu bewegen.

Zahlen:
Windkanal:
42 Meter Länge
10,50 Meter Höhe
400 Kilowatt Leistung
5 bis 35 Meter pro Sekunde Windgeschwindigkeit
Bewegungssimulator
Messstrecke:
5,50 Meter Länge
3 Meter Breite
2 Meter Höhe
Grafik und Fotos vom Bewegungssimulator:
http://intranet.tu-harburg.de/aktuell/pressemitteilung.php3
Aktuelles Bildmaterial mit Fotos der Teilnehmer der heutigen Pressekonferenz stehen ab 13 Uhr zum Download gleichfalls unter oben genanntem Link zur Verfügung.

Für Rückfragen:

TU Hamburg
Institut für Fluiddynamik und Schiffstheorie
Prof. Dr.-Ing. Moustafa Abdel-Maksoud
Tel.: 040 / 42878-6053
E-Mail: m.abdel-maksoud@tuhh.de
TU Hamburg-Harburg
Pressesprecherin
Jutta Katharina Werner
Tel. 040 /42878-4321
mobil: 0173 245 9999
E-Mail: j.werner@tuhh.de

Jutta Katharina Werner | idw
Weitere Informationen:
http://www.tuhh.de/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Das Auto lernt vorauszudenken
28.06.2017 | Technische Universität Wien

nachricht Stresstest über den Wolken
21.06.2017 | Hochschule Osnabrück

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten