Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mediensysteme erhalten Förderung für Projekt Augmented Studio

23.11.2007
Die Juniorprofessur Augmented Reality entwickelt digitale Projektionstechnologien für Fernsehstudios

Die Deutsche Forschungsgemeinschaft (DFG) unterstützt das neue Forschungsprojekt "Augmented Studio" der Juniorprofessur Augmented Reality an der Fakultät Medien der Bauhaus-Universität Weimar mit einer Förderung von insgesamt 231.000 Euro über einen Zeitraum von zweieinhalb Jahren.

Seit Ende 2006 forschen die Wissenschaftler unter Leitung von Jun.-Prof. Dr. Oliver Bimber an Projektionsverfahren, die in modernen Fernsehstudios und Filmsets Einsatz finden können. Mittels spezieller Soft- und Hardwaretechniken werden digitale Codes direkt in die Studiobeleuchtung und Videoprojektionen integriert, die für das menschliche Auge unsichtbar bleiben - von Studiokameras allerdings erfasst werden. Die Anwendung ermöglicht dann den Einsatz von speziellen Techniken innerhalb gewöhnlicher Filmstudios oder Filmsets, die bisher nur in so genannten virtuellen Studios (Bluebox) effektiv realisierbar waren. Darunter fallen u. a. die Positionsbestimmung der Studiokameras, die Tiefenrekonstruktion von Studioinhalten oder die Trennung von Vorder- und Hintergrund-Informationen (das so genannte Keying). Zugleich könnte diese Technologie umgekehrt die Kommunikation zwischen Moderation und Schauspielern unterstützen: Moderationsinformationen können interaktiv an beliebiger Stelle sichtbar dargestellt, aber nicht von den Studiokameras erfasst werden. Des Weiteren können Studiobeleuchtungen synthetisch hergestellt werden - ohne dabei analoge Lampen bewegen zu müssen. Diese so genannte projektor-basierte Beleuchtung hat den Vorteil, die Ausleuchtung "on-the-fly", also ohne zeitliche Verzögerung und im Produktionsfluss, verändern zu können.

Mit der DFG-Förderung kann das Forschungsprojekt "Augmented Studio" nun seine Arbeit bis 2010 intensiv fortsetzen. Beratende Kooperationspartner sind der Mitteldeutsche Rundfunk (MDR) und das Institut für Medientechnik an der TU Ilmenau.

Die Juniorprofessur Augmented Reality unter Leitung von Prof. Dr. Oliver Bimber ist seit 2003 im naturwissenschaftlich-technisch fokussierten Studiengang Mediensysteme der Fakultät Medien an der Bauhaus-Universität eingerichtet. Die Forschungsarbeit und Lehre konzentriert sich auf die Entwicklung von Rendering und Computer-Vision-Verfahren zur Realisierung neuartiger Displaytechnologien wie z.B. dem "SmartProjector" und mobiler Anwendungen wie z.B. dem digitalen Handy-Museumsführer "PhoneGuide" oder der optischen Datenübertragung von öffentlichen Displays auf Mobilfunktelefone "Unsynchronisierte 4D Barcodes".

Ausführliche Informationen zur Professur und zum Projekt finden Sie unter: http://www.uni-weimar.de/medien/ar. Alle Informationen zum Studium Mediensysteme sind hier erhältlich: http://www.uni-weimar.de/mediensysteme.

Kontakt:
Jun.-Prof. Dr. Oliver Bimber
E-Mail: bimber@uni-weimar.de
Tel.: +49 (0)3643-583724
Mobil: 0176-24799525

Claudia Weinreich | idw
Weitere Informationen:
http://www.uni-weimar.de/mediensysteme

Weitere Berichte zu: Augmented Mediensystem Reality Studio Studiokamera

Weitere Nachrichten aus der Kategorie Kommunikation Medien:

nachricht Wissenschaftler entschlüsseln das „perfekte Selfie“
26.06.2017 | Otto-Friedrich-Universität Bamberg

nachricht Wenn die Bilder lügen - KI-System entlarvt Fake News im Internet
20.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

Alle Nachrichten aus der Kategorie: Kommunikation Medien >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops