Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schweizer Käse: Design für effiziente Solarzellen

09.05.2011
Forscher arbeiten an materialsparenden Silizium-Dünnschichtzellen

Eine spezielle Nanostruktur ähnlich Schweizer Käse sorgt bei amorphen und sogenannten "Micromorph"-Solarzellen aus Silizium dafür, dass die Dünnschicht-Module besonders wenig Material benötigen und dennoch sehr effizient sind. "Die geschätzte mögliche Effizienz liegt im Bereich jener von polykristallinen Wafer-Solarzellen, wie sie derzeit die industrielle Fertigung dominieren", betont Milan Vanecek, Leiter der Photovoltaik-Gruppe am Institut für Physik der Akademie der Wissenschaften der Tschechischen Republik. Dementsprechend groß ist das Potenzial des gemeinsam mit Oerlikon Solar entwickelten Ansatzes.


Löchrige Solarzelle: Ansatz verbraucht weniger Silizium (Foto: Milan Vanecek)

Dreidimensional dünn

Amorphe und mikrokristalline Tandem-Solarzellen (Micromorph) müssen sehr dünn sein, damit der Abstand zwischen den elektrischen Kontakten nicht zu groß wird. Das geht normalerweise zulasten der Lichtabsorption und somit Effizienz. Das Team um Vanecek setzt darauf, die für die Zellen genutzte Zinkoxid-Substratplatte dreidimensional zu strukturieren. Durch Mikro- und Nanolöcher entsteht ein Muster, das Waben oder eben löchrigem Käse ähnelt. Das Silizium wird dann mit einem in der LCD-Fertigung gängigen Aufdampfverfahren aufgebracht.

Das ermöglicht Module, die selbst für Dünnschichtzellen extrem dünn sind, wie Vanecek gegenüber pressetext betont. Während das mikrokristalline Silizium in Micromorph-Zellen normalerweise über einen Mikrometer dick ist, sind mit dem neuen Design Lagen von rund 500 Nanometern Dicke möglich. Die amorphe Schicht wiederum ist sogar dünner als 200 Nanometer. Damit sinkt der Materialverbrauch deutlich, was wiederum geringere Fertigungskosten in Aussicht stellt - wodurch sich letztlich die Installation der Solarzellen schneller amortisiert.

Hohe Effizienz

Gleichzeitig sorgt die spezielle 3D-Struktur für eine nach Dünnschichtzellen-Maßstäben hohe Stromausbeute. Das Team berichtet in Applied Physics Letters, dass für amorphe Solarzellen zwölf Prozent und für Micromorph-Solarzellen sogar mehr als 15 Prozent Effizienz möglich scheinen. Das ist mit derzeit handelsüblichen polykristallinen Siliziumzellen vergleichbar, deren Effizienz laut Vanecek im Bereich von zwölf bis 16 Prozent liegt.

"Die merklich geringeren Kosten von Micromorph-Zellen könnten daher zu einer deutlichen Steigerung in der industriellen Produktion führen", meint daher der Wissenschaftler. Für ihn steht nun im Vordergrund, das Design weiter zu optimieren und die erreichte Effizienz zu steigern. Ob und wie schnell die Technologie tatsächlich umgesetzt wird, hängt also eher vom Industriepartner Oerlikon Solar ab.

Thomas Pichler | pressetext.redaktion
Weitere Informationen:
http://fzu.cz/en
http://oerlikon.com/solar

Weitere Berichte zu: Design Thinking Micromorph-Zellen Nanometer Oerlikon Silizium Solarzelle

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Speiseröhrenkrebs einfacher erkennen
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Neues Labor für die Aufbautechnik von ultradünnen Mikrosystemen
21.02.2017 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie

Chlamydien: Wie Bakterien das Ruder übernehmen

28.03.2017 | Biowissenschaften Chemie

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie