Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Interdisziplinäre Forschergruppe an der TU Dresden will Innenohr-Rätsel knacken

11.04.2006


Dass Mediziner daran interessiert sind, das menschliche Innenohr zu erforschen, muss nicht weiter hinterfragt werden. Doch was haben Wissenschaftler der Institute für Festkörpermechanik sowie für Luft- und Raumfahrttechnik an der TU Dresden damit zu tun? Die Antwort liegt in interdisziplinär angelegten Forschungsprojekten zum Thema "Fluid-Struktur-Modelle zur Mechanik und Pathomechanik des Innenohrs".



Das Innenohr ist ein sehr komplexes Organ, für dessen Erforschung das Know-how unterschiedlicher Disziplinen notwendig ist. An dem Forschungsprojekt arbeiten vier Einrichtungen zusammen, die zugleich eigenständigen Teilprojekten nachgehen und dennoch auf das Wissen der anderen angewiesen sind.



Das Innenohr ist der Teil des menschlichen Ohres, in dem die Schallwellen in elektrische Impulse umgewandelt und an die Nerven übertragen werden, also der eigentliche Hörprozess stattfindet. Die Forscher wollen sowohl Strukturen als auch Mechanismen in der Cochlea (Hörschnecke), dem Ort der Reizumwandlung, klären. Ziel ist es, den Hörprozess besser zu verstehen und später einmal Innenohr-Erkrankungen diagnostizieren und mittels geeigneter Implantate oder Operationstechniken therapieren zu können. Das Forschungsprojekt wurde von der Deutschen Forschungsgemeinschaft bisher auf zwei Jahre bewilligt, die Förderung über ein weiteres, drittes Jahr wurde in Aussicht gestellt.

Mit den Erkenntnissen sollen schließlich Simulationsmodelle auf drei verschiedenen Ebenen erstellt werden: der der Zelle, einer Zellgruppe und der Cochlea. Während die Mediziner Struktur- und Geometrieparameter für die Strukturen des Innenohrs bereitstellen sollen, die sie experimentell untersuchen, analysieren die Strömungsmechaniker die Strömungsbewegungen in der Cochlea. Ein kleiner Exkurs: Die Cochlea besteht aus Hohlräumen, die mit einer wasserähnlichen Flüssigkeit gefüllt sind. Diese nimmt den Schall auf und versetzt die Haarzellen in Schwingungen.

Die Erkenntnisse dienen allen Projektbeteiligten dazu, mittels mathematischer Berechnungen 3-D-Simulationsmodelle zu entwickeln, von denen sie sich Einblicke in die mikromechanischen Vorgänge beim Hören erhoffen.

Zu den Projektpartnern zählen an der TU Dresden das Institut für Festkörpermechanik, das Institut für Luft- und Raumfahrttechnik sowie die Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde der Medizinischen Fakultät Carl Gustav Carus. Beteiligt ist auch ein internationales, ingenieur- und naturwissenschaftlich besetztes Team der Hals-Nasen-Ohren-Klinik der Universität Tübingen.

Informationen für Journalisten: Prof. Jürgen Hardtke, Direktor des Instituts für Festkörpermechanik, Tel. 0351 463-37970, PD Dr. Thomas Zahnert, amtierender Klinikdirektor der HNO-Klinik, Tel. 0351 458-4420

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.tu-dresden.de/

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Multidisziplinäre Studie regt neue Strategie zur Medikamentenentwicklung an
15.01.2018 | Heidelberger Institut für Theoretische Studien gGmbH

nachricht Interaktionen zwischen einfachen molekularen Mechanismen führen zu komplexen Infektionsdynamiken
09.01.2018 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Kobold in der Zange

17.01.2018 | Biowissenschaften Chemie

Mit Elektrizität Magnetismus umschalten

17.01.2018 | Physik Astronomie

Maßgeschneiderte Eigenschaften erlauben Einblicke in Quantenpunkte

17.01.2018 | Physik Astronomie