Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Direktor und erweitertes Forschungsspektrum

07.09.2000


Prof. Dr. Rudolf

Gross


Prof. Dr. Rudolf Gross ist der neue Direktor des Walther-Meißner-Instituts für Tieftemperaturforschung der Bayerischen Akademie der Wissenschaften (WMI). Gross war bis zum 30. Juni dieses Jahres Professor für Experimentalphysik an der Universität zu Köln. In München hat er gleichzeitig mit der Leitung des WMI zum 1. Juli auch den Lehrstuhl für Technische Physik (E23) der Technischen Universität übernommen. Am Walther-Meißner-Institut möchte der neue Direktor das Forschungsspektrum deutlich erweitern und anwendungsbezogener ausrichten.

Rudolf Gross wurde 1956 in Ellwangen geboren. Er studierte Physik an der Eberhard-Karls-Universität Tübingen, wo er sich auch - nach einem Aufenthalt als Research Fellow am Electrotechnical Laboratory in Tsukuba, Japan, sowie einem Forschungsaufenthalt am IBM T.J. Watson Research Center in Yorktown Heigths, USA - 1993 habilitierte. Seit Januar 1996 hatte er den Lehrstuhl für Angewandte Physik an der Universität zu Köln inne.
Die Kombination der Leitung des WMI als des Forschungsinstituts für Tieftemperaturforschung der Bayerischen Akademie der Wissenschaften und der Forschung und Lehre an der TU München hält Rudolf Gross für besonders gelungen: "Forschung und Lehre gehören untrennbar zusammen. Ich möchte möglichst viele Studierende für die Forschung gewinnen und sie bereits sehr früh mit praktischen Forschungsarbeiten vertraut machen", erklärte er. Folglich hat er auch vor, möglichst viele Studierende in Forschungsprojekte des WMI einzubinden.


Erleichtert werden wird ihm das sicherlich dadurch, dass er das Forschungsspektrum des WMI deutlich erweitern möchte: So widmete man sich bisher in dem in Garching angesiedelten Institut, das von der Kommission für Tieftemperaturforschung der Bayerischen Akademie der Wissenschaften betrieben wird und ein direkt der Akademie zugehöriges und von dieser finanziertes Forschungsinstitut ist, primär der Grundlagenforschung im Bereich der Supraleitung und Suprafluidität (d.h. der Erforschung des widerstandslosen Fließens von Flüssigkeiten) sowie technologischen Entwicklungsarbeiten im Bereich der Kryotechnik (=Tieftemperaturtechnik).
Rudolf Gross nun möchte dieses Spektrum erweitern und anwendungsbezogenen Forschungsarbeiten mehr Raum geben. So soll z.B. die Herstellung und Charakterisierung von metallischen und magnetischen Nanostrukturen einen Schwerpunkt bilden (1 Nanometer = 10-9 m), indem Nanostrukturierungs- und Dünnschichttechniken mit den am WMI bereits etablierten Tief- und Ultratieftemperaturtechniken kombiniert werden. Ziel ist dabei die Untersuchung von Quanteneffekten in den Nanostrukturen, was vor allem vor dem Hintergrund der fortschreitenden Miniaturisierung unserer heutigen Elektronik von großem Interesse ist.
Darüber hinaus plant der WMI-Direktor einen Schwerpunkt zu supraleitenden und magnetischen Materialsystemen (wie z.B. Hochtemperatur-Supraleiter, magnetische Übergangsmetalloxide) zu schaffen und dadurch dem materialtechnischen Spektrum in der Münchner Forschungslandschaft eine neue und zukunftsträchtige Komponente hinzuzufügen. So ist abzusehen, dass durch die Verbesserung von magnetischen Materialsystemen magnetoelektronische Sensoren in der Automobiltechnik immer mehr Verwendung finden (z.B. in Anti-Blockiersystemen oder als Drehratensensoren für Kurbel- und Nockenwelle). Rudolf Gross jedenfalls erwartet sich in Garching Synergieeffekte durch eine enge Zusammenarbeit mit dem Walther-Schottky-Institut und dem Physikdepartment der TU München. Er begrüßt auch die räumliche Nähe des WMI zur Garchinger Forschungsneutronenquelle, da man für eine Charakterisierung von magnetischen Materialien die Technik der Neutronenbeugung benötigt.

Weitere Auskünfte erteilt Ihnen


Prof. Dr. Rudolf Gross
Walther-Meißner-Institut für Tieftemperaturforschung
der Bayerischen Akademie der Wissenschaften
Walther-Meißner-Str. 8
85748 Garching
Tel. 089/289-14201
Fax 089/289-14206
E-Mail Rudolf.Gross@wmi.badw.de
http://www.wmi.badw.de

Myriam Hoenig |

Weitere Berichte zu: Forschungsspektrum Garching Physik Tieftemperaturforschung

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Fake News finden und bekämpfen
17.08.2017 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht Neues interdisziplinäres Zentrum für Physik und Medizin in Erlangen
25.07.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten