Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler des Weizmann Inst. stoppen Erblindung bei Tieren mit Glaukom-ähnlicher Krankheit

06.03.2001


Wissenschaftlern des Weizmann Instituts gelang es, den voranschreitenden Verlust des Augenlichts bei Tieren mit Glaukom-ähnlicher Krankheit anzuhalten. Die innovative Studie, die in der
Zeitschrift Proceedings of the National Academy of Sciences U.S.A. am 6. März 2001 erscheint, kommt zu den Schluss, dass der am Weizmann Institut zur Behandlung von Multipler Sklerose entwickelte Wirkstoff Copaxone auch bei Menschen mit chronischem Glaukom den Verlust des Sehsinns aufhalten oder zumindest verlangsamen kann.

Glaukom oder grüner Star, an dem ein Prozent der erwachsenen Bevölkerung erkrankt, ist die häufigste Ursache von Erblindung bei Erwachsenen. Die Mehrheit der Patienten mit chronischem Glaukom haben erhöhten Augeninnendruck. Der Druck führt zu Abbauvorgängen am Sehnerv, häufige Folge ist eine Erblindung. Ursache für den erhöhten Augeninnendruck ist der mangelhafte Abfluss des Kammerwassers, einer transparenten Flüssigkeit, die die Zellen der äußeren Augenpartien mit Nährstoffen versorgt.

Seit vielen Jahren konzentriert sich die Suche nach einer besseren Glaukombehandlung auf dieses Abflusssystem und den Versuch, den Augendruck zu verringern. Es hat sich jedoch herausgestellt, dass sich die fortschreitende Degeneration des Sehnervs und das damit verbundene Erblindungsrisiko durch eine Reduktion des Augendrucks nicht aufhalten lässt.

Vor ungefähr fünf Jahren schlug Prof. Michal Schwartz von der Neurobiologischen Abteilung des Weizmann Instituts ein neues Konzept vor, das erklären konnte, warum eine Degeneration des Sehnervs auch nach einer Senkung des Augendrucks weiter voranschreitet.

Nach dieser Erklärung wird die Degeneration nicht nur durch den Druck verursacht, sondern auch durch Sekundärfaktoren, die durch die den ersten Schaden ausgelöst wurden. Zu diesen schädlichen Faktoren gehören chemische Stoffe, die eine wichtige Rolle im Leben des gesunden Nervs spielen. Wenn der Nerv jedoch Abbauprozesse durchläuft, erhöhen sich die Werte zu einem Grad, dass sie toxisch wirken. Einer dieser Stoffe ist der Neurotransmitter Glutamat, der aus den verletzten Nervenzellen austritt und die benachbarten gesunden Zellen ungünstig beeinflusst.

Entsprechend dieser Vorstellung entwickelte Prof. Schwartz eine originelle Strategie zum Umgang mit dem Problem. Sie rekrutierte das Immunsystem, dessen wohlbekannte Aufgabe die Verteidigung des Körpers gegen ’Invasoren’ von außen ist, für den Schutz des Nervs gegen schädliche Wirkstoffe aus dem eigenen Körper. Ihr Konzept stieß zunächst auf Skepsis, vor allem deshalb, weil es nicht nur die körpereigenen Stoffe einschloss sondern auch Zellen, die normalerweise eine Autoimmunkrankheit hervorrufen, wenn sie aktiviert werden.

Von Autoimmunität spricht man, wenn das Immunsystem körpereigenes Gewebe angreift. Bis vor kurzem besagte die allgemein anerkannte Theorie, dass ein normales Immunsystem ausschließlich fremde, krankheitsverursachende Stoffe identifiziert und angreift und nur im Fall eines Irrtums mit den körpereigenen Stoffen in Wechselwirkung tritt. Autoimmunkrankheiten wie Diabetes oder Multiple Sklerose sind das Ergebnis einer solchen Verwechslung.

Prof. Schwartz, die ebenfalls eine mit Stoffen aus dem Immunsystem arbeitende Therapie für Rückenmarksverletzungen entwickelt hat, die derzeit klinisch getestet wird, ist im Gegensatz zur allgemein verbreiteten Auffassung der Meinung, dass Autoimmunität eine positive Rolle im Körper spielen kann. Eine Reihe von Untersuchungen in ihrem Labor hat gezeigt, dass die Immunisierung mit Fragmenten des Proteins Myelin, der Schutzhülle der Nerven, den Abbau des geschädigten Sehnervs verhindern kann. Die Verwendung solcher Proteinfragmente oder Peptide zur Immunisierung von Menschen ist jedoch mit Risiken behaftet, weil einige dieser Peptide das Immunsystem dazu bringen, Nervenfasern anzugreifen, was zu Multipler Sklerose führt. Da Menschen große Unterschiede in ihrer genetischen Ausstattung aufweisen, ist die genaue Identität krankheitsverursachender Peptide beim Menschen schwer festzustellen.

Auf der Suche nach einer sicheren Alternative für diese Peptide probierte Prof. Schwartz in Zusammenarbeit mit Prof. Irun Cohen und Prof. Michael Sela von der Abteilung Immunologie des Weizmann Instituts Copaxone aus, das zur Behandlung von Multipler Sklerose eingesetzt wird. Dieser Wirkstoff wurde am Weizmann Institut von Dr. Dvora Teitelbaum, Prof. Ruth Arnon und Prof. Michael Sela entwickelt. Die Wissenschaftler stellten fest, dass die Immunisierung mit Copaxone die geschädigten Sehnerven vor neuronaler Degeneration schützte.

In der vorliegenden, in PNAS erscheinenden Studie, versuchten die Wissenschaftler nachzuweisen, wie Copaxone seine nervschützende Wirkung entfaltet. Die Untersuchungen, die von Prof. Schwartz, Prof. Eti Yoles und von den Studenten Jonathan Kipnis und Hadas Schori durchgeführt wurden, zeigten, dass Immunisierung mit Copaxone den Nerv vor der toxischen Wirkung des Neurotransmitters Glutamat abschirmt. In einer anderen Experimentreihe, die gemeinsam mit der US-amerikanischen Firma Allergan, Inc. durchgeführt wurde, wurde Ratten mit Glaukom-ähnlicher Krankheit Copaxone injiziert. (Das experimentelle Tiermodell, welches Glaukom am Menschen simuliert, wurde von Allergan entwickelt.) Die Wissenschaftler überwachten den Tod von Nervenzellen in dem von Glaukom befallenen Auge und stellten fest, dass bei Ratten, die mit einer einzigen Injektion von Copaxone immunisiert wurden, nur 4 Prozent der Nervenzellen abstarben, verglichen mit 28 Prozent bei Ratten, die nicht geimpft wurden. Die Immunisierung mit Copaxone schützte demnach den Nerv erheblich vor druckbedingtem Absterben.

Im Zuge dieser erfolgreichen Studie ist mit einem baldigen Beginn von Untersuchungen an Glaukom-Patienten zu rechnen. Die Wissenschaftler hoffen, dass die Untersuchungen durch die Tatsache erleichtert werden, dass Copaxone bereits von der US-Food and Drug Administration zugelassen ist.

Prof. Michal Schwartz ist Inhaberin des Maurice-und-Ilse-Katz-Lehrstuhls für Neuroimmunologie. Ihre Forschungsarbeit wird gefördert von der Alan-T.-Brown-Stiftung zur Heilung von Lähmung, von der Stiftung Glaukomforschung und durch den Jerome und Binette Lipper Award.

Debbie Weiss | idw

Weitere Berichte zu: Copaxone Degeneration Erblindung Glaukom Immunsystem Nerv Sehnerv Sklerose

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie