Neuer Weg zur Herstellung von Nanomagneten für die Informationstechnologie

Ein Schichtsystem aus Kobalt (unten) und organischen Molekülen kann zur Speicherung magnetischer Informationen dienen, die in der Illustration durch Einsen und Nullen angedeutet sind. Die grünen und roten Pfeile geben die Ausrichtung der Spins an. Forschungszentrum Jülich<br>

Um die Leistungsfähigkeit von Computern zu steigern und ihren Energiebedarf zu verringern, wurden in der Vergangenheit Prozessoren und Speicher stetig verkleinert. Doch diese Strategie steht vor dem Ende, weil die Physik ihr Grenzen setzt:

Zu kleine Bauteile werden instabil; Daten können darin nicht mehr sicher gespeichert und verarbeitet werden. Ein Grund dafür ist, dass schon ein Atom mehr oder weniger in Bauteilen aus nur wenigen Atomen zu ganz unterschiedlichen physikalischen Eigenschaften führen kann. Die genaue Zahl und Anordnung von Atomen in Metallen und Halbleitern, aus denen Bauteile heute bestehen, lässt sich aber kaum kontrollieren.

Einen Ausweg könnte eine so genannte „molekulare“ Elektronik mit nanometerkleinen Bauteilen aus Molekülen bieten, denn Moleküle bestehen aus einer festen Anzahl von Atomen, können funktionsspezifisch designt und preisgünstig in immer wieder identischer Form hergestellt werden. Nutzt man dabei neben der elektrischen Ladung der Elektronen auch ihr magnetisches Moment, den Spin, scheinen sogar ganz neue Funktionalitäten realisierbar, etwa nichtflüchtige Arbeitsspeicher oder Quantencomputer.

Moleküle für solch eine „molekulare Spinelektronik“ müssen bestimmte magnetische Eigenschaften aufweisen. Doch diese sind empfindlich und gehen bisher häufig verloren, wenn die Moleküle an anorganischen Materialien befestigt werden, die nötig sind, um den Strom zu leiten. Deshalb hat ein Team von Wissenschaftlern des Forschungszentrums Jülich, der Universität Göttingen, des US-amerikanischen Massachusetts Institute of Technology, des kroatischen Rudjer Boskovic Institute und des indischen IISER-Kolkata eine neue Strategie verfolgt und die unvermeidbaren Wechselwirkungen zwischen Molekül und Untergrund gezielt ausgenutzt, um eine molekular-magnetische Hybrid-Schicht mit den gewünschten Eigenschaften zu erzeugen.

Auf eine magnetische Schicht aus Kobalt brachten die Forscher das für sich genommen nichtmagnetische Zinkmethylphenylalenyl, kurz ZMP auf, ein kleines metallorganisches Molekül. Sie zeigten, dass das ZMP erst gemeinsam mit der Kobaltoberfläche ein magnetisches „Sandwich“ bildet und dass dieses sich durch magnetische Felder gezielt zwischen zwei magnetischen Zuständen hin- und herschalten lässt. Dabei ändert sich der elektrische Widerstand des Schichtsystems um mehr als 20 Prozent. Um solche so genannten „magnetoresistiven“ Effekte, die für das Speichern, Verarbeiten und Messen von Daten eingesetzt werden können, in molekularen Systemen zu erzeugen, benötigten Forscher bisher oft Temperaturen weit unter minus 200 Grad Celsius.

„Unser System ist schon bei vergleichsweise warmen minus 20 Grad Celsius stark magnetoresistiv. Dies ist ein deutlicher Fortschritt auf dem Weg zur Entwicklung von Moleküldatenspeichern und -rechenelementen, die bei Raumtemperatur funktionieren“, freut sich der Jülicher Wissenschaftler Dr. Nicolae Atodiresei, theoretischer Physiker am Peter Grünberg Institut und am Institute for Advanced Simulation. Bei der Entwicklung eines physikalischen Modells, das die Eigenschaften des Materials erklärt, mit Hilfe von Berechnungen an Jülicher Supercomputern waren er und seine Jülicher Kollegen federführend.

„Nun wissen wir, dass es entscheidend ist, dass das Molekül praktisch flach ist“, berichtet Atodiresei. „Dann bilden jeweils zwei Moleküle einen Stapel und lagern sich dicht an der Kobaltoberfläche an. Das Kobalt und das untere Moleküle bilden das magnetische Sandwich, das obere Molekül wirkt als `Spinfilter´ und lässt vorwiegend Elektronen passieren, deren Spins passend ausgerichtet sind.“ Die Ausrichtung lässt sich zum Beispiel mit einem Magnetfeld steuern. Aufbauend auf ihren Erkenntnissen wollen die Forscher ihr Sandwichsystem nun weiter optimieren und so variieren, dass sich die Filterwirkung auch durch elektrische Felder und Lichtpulse steuern lässt.

Originalveröffentlichung:
Interface-engineered templates for molecular spin memory devices;
K.V. Raman et al.; Nature (Ausgabe vom 24.1.2013) ; DOI: 10.1038/nature11719

Weitere Informationen:
Forschungszentrum Jülich:
http://www.fz-juelich.de
Institutsbereich „Quanten-Theorie der Materialien“ (PGI-1/IAS-1): http://www.fz-juelich.de/pgi/pgi-1/DE/Home/
Universität Göttingen:
http://www.uni-goettingen.de/de/28446.html
und http://www.ph1.physik.uni-goettingen.de/
Massachusetts Institute of Technology:
http://web.mit.edu/fbml/, http://dmse.mit.edu/ und http://web.mit.edu/physics/
Rudjer Boskovic Institute:
http://thphys.irb.hr/
IISER-Kolkata:
http://chem.iiserkol.ac.in/

Ansprechpartner:
Dr. Nicolae Atodiresei,
Quanten-Theorie der Materialien (PGI-1/IAS-1),
Forschungszentrum Jülich,
Tel 02461 61-2859,
E-Mail: n.atodiresei@fz-juelich.de

Pressekontakt:
Angela Wenzik,
Wissenschaftsjournalistin,
Forschungszentrum Jülich,
Tel. 02461 61-6048,
E-Mail: a.wenzik@fz-juelich.de

Media Contact

Annette Stettien Forschungszentrum Jülich

Weitere Informationen:

http://www.fz-juelich.de

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer