Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Sonden fürs Gehirn

11.02.2013
Das Institut für Mikrosystemtechnik der Universität Freiburg koordiniert das Forschungsprojekt NeuroSeeker

Winzige Sonden für die Forschung und für medizinische Anwendungen im Gehirn entwickeln: Das ist das Ziel des Projekts NeuroSeeker, das im Februar 2013 mit einer Auftaktveranstaltung in Leuven/Belgien gestartet ist.


Beispiel einer neuronalen Sonde mit 752 Mikroelektroden, verteilt auf vier Millimeter langen Schäften, wie sie im Projekt NeuroProbes entwickelt wurden: An diese Arbeiten wollen die Wissenschaftler im neuen Forschungsprojekt NeuroSeeker anknüpfen.

Quelle: IMTEK

In dem fächerübergreifenden Vorhaben arbeiten zehn Partnerinstitutionen aus Europa und Kanada zusammen. Die Universität Freiburg erhält für ihren Beitrag in den kommenden vier Jahren etwa 1,7 Millionen Euro von der Europäischen Union (EU). Koordinator der Kooperation ist Dr. Patrick Ruther, der am Institut für Mikrosystemtechnik (IMTEK) der Universität Freiburg bei Prof. Dr. Oliver Paul am Lehrstuhl für Materialien der Mikrosystemtechnik forscht.

NeuroSeeker baut auf dem erfolgreichen EU-Projekt NeuroProbes auf, das im Jahr 2010 ausgelaufen ist. Die Wissenschaftlerinnen und Wissenschaftler werden neuartige Sonden für die Ableitung neuronaler Signale und für die optische Gewebestimulation entwickeln. Für ein grundlegendes Verständnis des Gehirns ist es unumgänglich, Signale direkt von dessen Grundbausteinen, den Neuronen, abzuleiten. Die Sonden sollen daher Signale einzelner Nervenzellen und deren Verknüpfungen messen, analysieren und gegebenenfalls neuronales Gewebe optisch oder elektrisch stimulieren. Sie sollen als Werkzeuge in der neurowissenschaftlichen Grundlagenforschung und bei medizinischen Anwendungen, beispielsweise in der Epilepsiediagnostik, zum Einsatz kommen.

Partnerinstitutionen des Projekts sind das Forschungszentrum Imec mit Sitz in Leuven/Belgien, die Universität Parma/Italien, die niederländischen Universitäten Amsterdam und Nijmegen und die Universität Lethbridge/Kanada. Hinzu kommen weitere Einrichtungen, die ihr Wissen einbringen: die Fundação Champalimaud aus Portugal, die Max-Planck-Gesellschaft aus Deutschland, die Ungarische Akademie der Wissenschaften und die gemeinsame IMTEK-Imec-Ausgründung ATLAS Neuroengineering aus Belgien. Mit seinen Erkenntnissen in der Neurotechnologie und zu Gehirn-Maschine-Schnittstellen wird NeuroSeeker den neuen Exzellenzcluster BrainLinks-BrainTools der Universität Freiburg unterstützen.

Kontakt:
Dr. Patrick Ruther
Lehrstuhl Materialien der Mikrosystemtechnik
Institut für Mikrosystemtechnik – IMTEK
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-7197
E-Mail: ruther@imtek.de

Katrin Grötzinger
Kommunikation & Marketing
Institut für Mikrosystemtechnik – IMTEK
Albert-Ludwigs-Universität Freiburg
Tel: 0761/203-73242
E-Mail: katrin.groetzinger@imtek.uni-freiburg.de

Rudolf-Werner Dreier | Uni Freiburg im Breisgau
Weitere Informationen:
http://www.uni-freiburg.de
http://www.pr.uni-freiburg.de/pm/2013/pm.2013-02-11.43-en?set_language=en

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

nachricht Drohnen sehen auch im Dunkeln
20.09.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie