Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationale Doktorandengruppe "Scientific Computing in Engineering" eingerichtet

07.12.2004


Die besten Nachwuchswissenschaftler nach Bremen holen: Genau das gelang jetzt dem Fachbereich Mathematik/Informatik der Universität Bremen. Unter Federführung des Zentrums für Technomathematik ist die Internationale Doktorandengruppe "Scientific Computing in Engineering" eingerichtet worden. Ende November 2004 fand die feierliche Eröffnung statt. Bereits Anfang Oktober begannen - zunächst acht - Studierende aus sechs Nationen ihre Promotion.


Das Doktorandenprogramm wird vom Land Bremen und von der Universität finanziert. Es konnte sich in einem harten Wettbewerb wegen des ungewöhnlichen wissenschaftlichen Anspruchs, des innovativen Konzepts, der interdisziplinären und internationalen Ausrichtung durchsetzen. Das hochkarätige Gutachter-Gremium von auswärtigen Experten überzeugte vor allem, dass in den Doktorarbeiten nicht mehr Einzelmodelle, sondern Prozessketten betrachtet werden. Derartige Projekte können nicht mehr innerhalb einzelner Wissenschaftsdisziplinen bearbeitet werden. Die Doktoranden forschen deshalb in Tandems aus je einem Ingenieur- und einem Mathematikdoktoranden zusammen. Auch Betreuer der Doktoranden kommen aus unterschiedlichen wissenschaftlichen Einrichtungen: neben dem ZeTeM aus dem Institut für Werkstofftechnik (IWT), dem Institut für Theoretische Elektrotechnik und Mikroelektronik (ITEM), dem Bremer Institut für Angewandte Strahltechnik (BIAS) und dem Fachbereich Produktionstechnik.

Worum geht es beim "Scientific Computing in Engineering"? Kein modernes Industrieunternehmen fertigt neue Maschinen oder Produkte, ohne deren Funktionalität zuvor am Computer modelliert und simuliert zu haben. Die dabei betrachteten Prozessketten werden immer komplexer und sie erfordern in zunehmendem Maße die Verknüpfung von Einzelaspekten, die bisher getrennt modelliert wurden. Die Schnittmenge der unterschiedlichen Anwendungsfelder des Wissenschaftlichen Rechnens sind Modellierung, mathematisch fundierte Methodenentwicklung und numerische Simulation. Dies sind die zentralen Forschungsthemen der Doktorandengruppe SCiE, und diese bilden den gemeinsamen wissenschaftlichen Kern des Programms. In den Schwerpunktbereichen Materialwissenschaften, Fertigungstechnik und Mikroelektronik wird hier eine mathematisch-ingenieurwissenschaftliche Gesamtbetrachtung einiger ausgewählter Prozessketten vorgenommen. Darüber hinaus erfordern Interdisziplinarität, Tandembildung und internationale Zusammensetzung von den Kollegiaten ein hohes Maß an wissenschaftlicher und sozialer Kommunikationsfähigkeit. Mit dem Erwerben von Fachkompetenzen und "Soft Skills" wird zugleich auch ein erfolgreicher Berufseinstieg nach Abschluss der Promotion unterstützt.


Die Forschungsprojekte

Projekt 1: Selbstoptimierende Simulation lasergeschweißter Verbindungen unter Zugabe von Zusatzwerkstoff

In diesem Projekt soll das Laserstrahlschweißen von Aluminiumlegierungen unter Verwendung von Zusatzwerkstoff mathematisch modelliert und effiziente numerische Verfahren (zum Beispiel adaptive Finite-Elemente-Methoden) zur Lösung der resultierenden Multiskalenmodelle entwickelt werden. Auf der Basis numerischer Simulationen können dann selbstregulierende Optimierungsstrategien für das Laserstrahlschweißen erarbeitet werden.

Projekt 2: Modellierung und Simulation thermochemischer Wärmebehandlungsverfahren

Thermochemische Verfahren, etwa Aufkohlen/Carbonitrieren oder Nitrieren/Nitrocarburieren, werden in der Stahlproduktion eingesetzt, um definierte Zustände in der Randschicht der Werkstücke zu erreichen. In diesem Projekt sollen experimentelle Untersuchungen mit der mathematischen Modellierung und numerischen Simulation derartiger Verfahren gekoppelt werden. Dabei sind insbesondere die chemischen Veränderungen (Ausscheidungsbildung u. a.) in der Randschicht oder -zone zu modellieren und experimentell wie numerisch zu untersuchen.

Projekt 3: Signalanalyse mit prozessgenerierten Wavelets für die Zustandsüberwachung von Profilschienenführungen

Ziel dieses Projekts ist die Entwicklung und Erprobung effizienter (d.h. echtzeitfähiger) Multiskalen-Verfahren für die Zustandsüberwachung von Profilschienenführungen von Werkzeugmaschinen. Auf Grundlage von Messdaten und mithilfe der Wavelet-Analysis, insbesondere der diskreten Wavelet-Transformation, sollen spezielle, prozessgenerierte und strukturangepasste Verfahren entwickelt und in Software umgesetzt werden.

Projekt 4: Modellierung und Simulation von mikrofluidischen Systemen

Vorhandene Modellierungsansätze für ein Verhaltensmodell für die Befüllung strukturierter Mikrokanäle, die zum großen Teil auf Heuristiken beruhen, sollen in mathematische Modelle überführt werden, die auch für allgemeinere mikrofluidische Systeme nutzbar sind. Numerische Verfahren für die Simulation des Systemverhaltens sind zu entwickeln, die sowohl die großen Dimensionen als auch die stark unterschiedlichen Skalen der eingehenden Parameter erfolgreich behandeln können und ebenfalls die auftretenden physikalischen Effekte behandeln.

Weitere Informationen:

Universität Bremen
Fachbereich Mathematik/Informatik
Zentrum für Technomathematik
Prof. Dr. Peter Maaß
Tel. 0421 218 9497 oder ? 4443
Email: pmaass@math.uni-bremen.de

Angelika Rockel | idw
Weitere Informationen:
http://www.uni-bremen.de

Weitere Berichte zu: Computing Engineering Modellierung Simulation

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ergonomie am Arbeitsplatz: Kamera erkennt ungesunde Bewegungen
24.04.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht TU Ilmenau entwickelt Chiptechnologie von morgen
20.04.2017 | Technische Universität Ilmenau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen