Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationale Doktorandengruppe "Scientific Computing in Engineering" eingerichtet

07.12.2004


Die besten Nachwuchswissenschaftler nach Bremen holen: Genau das gelang jetzt dem Fachbereich Mathematik/Informatik der Universität Bremen. Unter Federführung des Zentrums für Technomathematik ist die Internationale Doktorandengruppe "Scientific Computing in Engineering" eingerichtet worden. Ende November 2004 fand die feierliche Eröffnung statt. Bereits Anfang Oktober begannen - zunächst acht - Studierende aus sechs Nationen ihre Promotion.


Das Doktorandenprogramm wird vom Land Bremen und von der Universität finanziert. Es konnte sich in einem harten Wettbewerb wegen des ungewöhnlichen wissenschaftlichen Anspruchs, des innovativen Konzepts, der interdisziplinären und internationalen Ausrichtung durchsetzen. Das hochkarätige Gutachter-Gremium von auswärtigen Experten überzeugte vor allem, dass in den Doktorarbeiten nicht mehr Einzelmodelle, sondern Prozessketten betrachtet werden. Derartige Projekte können nicht mehr innerhalb einzelner Wissenschaftsdisziplinen bearbeitet werden. Die Doktoranden forschen deshalb in Tandems aus je einem Ingenieur- und einem Mathematikdoktoranden zusammen. Auch Betreuer der Doktoranden kommen aus unterschiedlichen wissenschaftlichen Einrichtungen: neben dem ZeTeM aus dem Institut für Werkstofftechnik (IWT), dem Institut für Theoretische Elektrotechnik und Mikroelektronik (ITEM), dem Bremer Institut für Angewandte Strahltechnik (BIAS) und dem Fachbereich Produktionstechnik.

Worum geht es beim "Scientific Computing in Engineering"? Kein modernes Industrieunternehmen fertigt neue Maschinen oder Produkte, ohne deren Funktionalität zuvor am Computer modelliert und simuliert zu haben. Die dabei betrachteten Prozessketten werden immer komplexer und sie erfordern in zunehmendem Maße die Verknüpfung von Einzelaspekten, die bisher getrennt modelliert wurden. Die Schnittmenge der unterschiedlichen Anwendungsfelder des Wissenschaftlichen Rechnens sind Modellierung, mathematisch fundierte Methodenentwicklung und numerische Simulation. Dies sind die zentralen Forschungsthemen der Doktorandengruppe SCiE, und diese bilden den gemeinsamen wissenschaftlichen Kern des Programms. In den Schwerpunktbereichen Materialwissenschaften, Fertigungstechnik und Mikroelektronik wird hier eine mathematisch-ingenieurwissenschaftliche Gesamtbetrachtung einiger ausgewählter Prozessketten vorgenommen. Darüber hinaus erfordern Interdisziplinarität, Tandembildung und internationale Zusammensetzung von den Kollegiaten ein hohes Maß an wissenschaftlicher und sozialer Kommunikationsfähigkeit. Mit dem Erwerben von Fachkompetenzen und "Soft Skills" wird zugleich auch ein erfolgreicher Berufseinstieg nach Abschluss der Promotion unterstützt.


Die Forschungsprojekte

Projekt 1: Selbstoptimierende Simulation lasergeschweißter Verbindungen unter Zugabe von Zusatzwerkstoff

In diesem Projekt soll das Laserstrahlschweißen von Aluminiumlegierungen unter Verwendung von Zusatzwerkstoff mathematisch modelliert und effiziente numerische Verfahren (zum Beispiel adaptive Finite-Elemente-Methoden) zur Lösung der resultierenden Multiskalenmodelle entwickelt werden. Auf der Basis numerischer Simulationen können dann selbstregulierende Optimierungsstrategien für das Laserstrahlschweißen erarbeitet werden.

Projekt 2: Modellierung und Simulation thermochemischer Wärmebehandlungsverfahren

Thermochemische Verfahren, etwa Aufkohlen/Carbonitrieren oder Nitrieren/Nitrocarburieren, werden in der Stahlproduktion eingesetzt, um definierte Zustände in der Randschicht der Werkstücke zu erreichen. In diesem Projekt sollen experimentelle Untersuchungen mit der mathematischen Modellierung und numerischen Simulation derartiger Verfahren gekoppelt werden. Dabei sind insbesondere die chemischen Veränderungen (Ausscheidungsbildung u. a.) in der Randschicht oder -zone zu modellieren und experimentell wie numerisch zu untersuchen.

Projekt 3: Signalanalyse mit prozessgenerierten Wavelets für die Zustandsüberwachung von Profilschienenführungen

Ziel dieses Projekts ist die Entwicklung und Erprobung effizienter (d.h. echtzeitfähiger) Multiskalen-Verfahren für die Zustandsüberwachung von Profilschienenführungen von Werkzeugmaschinen. Auf Grundlage von Messdaten und mithilfe der Wavelet-Analysis, insbesondere der diskreten Wavelet-Transformation, sollen spezielle, prozessgenerierte und strukturangepasste Verfahren entwickelt und in Software umgesetzt werden.

Projekt 4: Modellierung und Simulation von mikrofluidischen Systemen

Vorhandene Modellierungsansätze für ein Verhaltensmodell für die Befüllung strukturierter Mikrokanäle, die zum großen Teil auf Heuristiken beruhen, sollen in mathematische Modelle überführt werden, die auch für allgemeinere mikrofluidische Systeme nutzbar sind. Numerische Verfahren für die Simulation des Systemverhaltens sind zu entwickeln, die sowohl die großen Dimensionen als auch die stark unterschiedlichen Skalen der eingehenden Parameter erfolgreich behandeln können und ebenfalls die auftretenden physikalischen Effekte behandeln.

Weitere Informationen:

Universität Bremen
Fachbereich Mathematik/Informatik
Zentrum für Technomathematik
Prof. Dr. Peter Maaß
Tel. 0421 218 9497 oder ? 4443
Email: pmaass@math.uni-bremen.de

Angelika Rockel | idw
Weitere Informationen:
http://www.uni-bremen.de

Weitere Berichte zu: Computing Engineering Modellierung Simulation

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Mehrkernprozessoren für Mobilität und Industrie 4.0
07.12.2016 | Karlsruher Institut für Technologie

nachricht Wenn das Handy heimlich zuhört: Abwehr ungewollten Audiotrackings durch akustische Cookies
07.12.2016 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie