Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationale Doktorandengruppe "Scientific Computing in Engineering" eingerichtet

07.12.2004


Die besten Nachwuchswissenschaftler nach Bremen holen: Genau das gelang jetzt dem Fachbereich Mathematik/Informatik der Universität Bremen. Unter Federführung des Zentrums für Technomathematik ist die Internationale Doktorandengruppe "Scientific Computing in Engineering" eingerichtet worden. Ende November 2004 fand die feierliche Eröffnung statt. Bereits Anfang Oktober begannen - zunächst acht - Studierende aus sechs Nationen ihre Promotion.


Das Doktorandenprogramm wird vom Land Bremen und von der Universität finanziert. Es konnte sich in einem harten Wettbewerb wegen des ungewöhnlichen wissenschaftlichen Anspruchs, des innovativen Konzepts, der interdisziplinären und internationalen Ausrichtung durchsetzen. Das hochkarätige Gutachter-Gremium von auswärtigen Experten überzeugte vor allem, dass in den Doktorarbeiten nicht mehr Einzelmodelle, sondern Prozessketten betrachtet werden. Derartige Projekte können nicht mehr innerhalb einzelner Wissenschaftsdisziplinen bearbeitet werden. Die Doktoranden forschen deshalb in Tandems aus je einem Ingenieur- und einem Mathematikdoktoranden zusammen. Auch Betreuer der Doktoranden kommen aus unterschiedlichen wissenschaftlichen Einrichtungen: neben dem ZeTeM aus dem Institut für Werkstofftechnik (IWT), dem Institut für Theoretische Elektrotechnik und Mikroelektronik (ITEM), dem Bremer Institut für Angewandte Strahltechnik (BIAS) und dem Fachbereich Produktionstechnik.

Worum geht es beim "Scientific Computing in Engineering"? Kein modernes Industrieunternehmen fertigt neue Maschinen oder Produkte, ohne deren Funktionalität zuvor am Computer modelliert und simuliert zu haben. Die dabei betrachteten Prozessketten werden immer komplexer und sie erfordern in zunehmendem Maße die Verknüpfung von Einzelaspekten, die bisher getrennt modelliert wurden. Die Schnittmenge der unterschiedlichen Anwendungsfelder des Wissenschaftlichen Rechnens sind Modellierung, mathematisch fundierte Methodenentwicklung und numerische Simulation. Dies sind die zentralen Forschungsthemen der Doktorandengruppe SCiE, und diese bilden den gemeinsamen wissenschaftlichen Kern des Programms. In den Schwerpunktbereichen Materialwissenschaften, Fertigungstechnik und Mikroelektronik wird hier eine mathematisch-ingenieurwissenschaftliche Gesamtbetrachtung einiger ausgewählter Prozessketten vorgenommen. Darüber hinaus erfordern Interdisziplinarität, Tandembildung und internationale Zusammensetzung von den Kollegiaten ein hohes Maß an wissenschaftlicher und sozialer Kommunikationsfähigkeit. Mit dem Erwerben von Fachkompetenzen und "Soft Skills" wird zugleich auch ein erfolgreicher Berufseinstieg nach Abschluss der Promotion unterstützt.


Die Forschungsprojekte

Projekt 1: Selbstoptimierende Simulation lasergeschweißter Verbindungen unter Zugabe von Zusatzwerkstoff

In diesem Projekt soll das Laserstrahlschweißen von Aluminiumlegierungen unter Verwendung von Zusatzwerkstoff mathematisch modelliert und effiziente numerische Verfahren (zum Beispiel adaptive Finite-Elemente-Methoden) zur Lösung der resultierenden Multiskalenmodelle entwickelt werden. Auf der Basis numerischer Simulationen können dann selbstregulierende Optimierungsstrategien für das Laserstrahlschweißen erarbeitet werden.

Projekt 2: Modellierung und Simulation thermochemischer Wärmebehandlungsverfahren

Thermochemische Verfahren, etwa Aufkohlen/Carbonitrieren oder Nitrieren/Nitrocarburieren, werden in der Stahlproduktion eingesetzt, um definierte Zustände in der Randschicht der Werkstücke zu erreichen. In diesem Projekt sollen experimentelle Untersuchungen mit der mathematischen Modellierung und numerischen Simulation derartiger Verfahren gekoppelt werden. Dabei sind insbesondere die chemischen Veränderungen (Ausscheidungsbildung u. a.) in der Randschicht oder -zone zu modellieren und experimentell wie numerisch zu untersuchen.

Projekt 3: Signalanalyse mit prozessgenerierten Wavelets für die Zustandsüberwachung von Profilschienenführungen

Ziel dieses Projekts ist die Entwicklung und Erprobung effizienter (d.h. echtzeitfähiger) Multiskalen-Verfahren für die Zustandsüberwachung von Profilschienenführungen von Werkzeugmaschinen. Auf Grundlage von Messdaten und mithilfe der Wavelet-Analysis, insbesondere der diskreten Wavelet-Transformation, sollen spezielle, prozessgenerierte und strukturangepasste Verfahren entwickelt und in Software umgesetzt werden.

Projekt 4: Modellierung und Simulation von mikrofluidischen Systemen

Vorhandene Modellierungsansätze für ein Verhaltensmodell für die Befüllung strukturierter Mikrokanäle, die zum großen Teil auf Heuristiken beruhen, sollen in mathematische Modelle überführt werden, die auch für allgemeinere mikrofluidische Systeme nutzbar sind. Numerische Verfahren für die Simulation des Systemverhaltens sind zu entwickeln, die sowohl die großen Dimensionen als auch die stark unterschiedlichen Skalen der eingehenden Parameter erfolgreich behandeln können und ebenfalls die auftretenden physikalischen Effekte behandeln.

Weitere Informationen:

Universität Bremen
Fachbereich Mathematik/Informatik
Zentrum für Technomathematik
Prof. Dr. Peter Maaß
Tel. 0421 218 9497 oder ? 4443
Email: pmaass@math.uni-bremen.de

Angelika Rockel | idw
Weitere Informationen:
http://www.uni-bremen.de

Weitere Berichte zu: Computing Engineering Modellierung Simulation

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Erster Modularer Supercomputer weltweit geht am Forschungszentrum Jülich in Betrieb
14.11.2017 | Forschungszentrum Jülich GmbH

nachricht Online-Computerspiele verändern das Gehirn
09.11.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte