Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Für das «absolute Gehör» wirken zwei Hirnteile zusammen

07.01.2015

Menschen, die «absolut hören», können Töne sofort und ohne Bezug zu Vergleichstönen benennen. Die neuronalen Grundlagen dieser aussergewöhnlichen Fähigkeit werden am Lehrstuhl für Neuropsychologie der Universität Zürich intensiv erforscht. Die Forschenden haben nun bei diesen aussergewöhnlichen Menschen eine enge funktionelle Kopplung zwischen dem Hörkortex im Gehirn und dem Stirnhirn festgestellt. Ein Befund, der nicht nur theoretisch, sondern auch praktisch von Bedeutung ist.

Mozart soll es gehabt haben, Bach und Beethoven ebenso: das «absolute Gehör». Die Fähigkeit also, einen Ton zu benennen und zu kategorisieren, ohne dazu Vergleichstöne nutzen zu müssen. Die sogenannten Absoluthörenden nehmen einen Ton wahr und können ihn dann präzise zum Beispiel als Cis, A oder Fis bezeichnen, während die meisten Menschen Töne nur relativ unterscheiden können.

Die bemerkenswerte Fähigkeit ist mit einer Prävalenz von einem Prozent in der Normalbevölkerung relativ selten, wird aber bei professionellen Musikern mit 20 Prozent häufiger beobachtet; oft wird vermutet, dass diese besondere Hörfähigkeit ein wesentlicher Aspekt von aussergewöhnlicher Musikbegabung ist.

Im Musik-Lab am Lehrstuhl für Neuropsychologie der UZH wird unter der Leitung von Prof. Lutz Jäncke dieses Phänomen bereits seit vielen Jahren intensiv erforscht. In einer aktuellen Studie mit absolut hörenden Musikern wurden nun Befunde erzielt, die gemäss Erstautor Stefan Elmer eine neue Sicht auf die zugrunde liegenden psychologischen und neurophysiologischen Prozesse beim «absoluten Gehör» eröffnen:

«Mit unserer Studie zeigen wir, wie beim ‹absoluten Hören› zwei Hirngebiete, nämlich der Hörkortex und der dorsale Frontalkortex, zusammenarbeiten. Damit vereinen wir zwei eigentlich entgegengesetzte Erklärungsansätze für das Phänomen miteinander.»

Zwei Theorien zum «absoluten Gehör»
Eine Erklärungslinie geht davon aus, dass Absoluthörer die Töne bereits auf einer sehr frühen Stufe der Tonverarbeitung kategorisieren. Das bedeutet, dass sie Töne gleich wie Sprachlaute verarbeiten und diese bestimmten Kategorien zuordnen, was als kategorielle Wahrnehmung von Tönen bezeichnet wird. Diese These geht damit davon aus, dass die Töne bei Absoluthörern im Gehirn bereits im primären und sekundären Hörkortex verarbeitet werden.

Eine andere Theorie schlägt vor, dass Absoluthörer die Töne erst später verarbeiten und die Töne mit Gedächtnisinformationen assoziieren. Die Menschen mit dieser Begabung sollen insbesondere die unbewussten Zuordnungen der Töne zu Gedächtnisinformationen besonders gut beherrschen; diese Zuordnungen werden vor allem im oberen Stirnhirn, im dorsalen Frontalkortex, vorgenommen. «Beide Theorien machen also hinsichtlich des Zeitpunkts und des anatomischen Ortes der speziellen Verarbeitung völlig unterschiedliche Aussagen und bislang existieren für beide Theorien unterstützende Befunde», so Lutz Jäncke.

Verbundene Hirnareale erklären das Phänomen
In seiner Studie kann Stefan Elmer nun zeigen, dass der linksseitige Hörkortex und der linksseitige dorsale Frontalkortex funktionell bereits im Ruhezustand – das heisst, wenn keine Aufgaben zu bewältigen sind – stark gekoppelt sind. Diese funktionelle Kopplung konnte anhand eines mathematischen Verfahrens geschätzt werden, das mittels Oberflächen-Elektroenzephalogramm (EEG) auf die Hirnaktivitäten im Inneren des Gehirns schliesst. Bei Absoluthörern sind die neurophysiologischen Aktivitäten im Frontal- und Hörkortex synchronisiert, was auf eine enge funktionale Kopplung schliessen lässt.

Das bedeutet, dass die Hirngebiete, welche frühe Wahrnehmungsfunktionen (Hörkortex) bzw. späte Gedächtnisfunktionen (dorsaler Frontalkortex) kontrollieren, bereits im Ruhezustand eng verwoben sind. «Diese Koppelung begünstigt einen besonders effizienten Informationsaustausch zwischen dem Hörkortex und dem dorsalen Frontalkortex bei Absoluthörern, so dass Wahrnehmungs- und Gedächtnisinformationen schnell und effizient ausgetauscht werden können», erläutert Elmer.

Training der auditorischen Wahrnehmung
Die Resultate sind nicht nur für das Verständnis des «absoluten Gehörs» von Bedeutung, sondern auch für das Verständnis effizienter Hörverarbeitung: «Die auditorische Wahrnehmung hängt nicht nur von der Integrität des Hörkortex’ ab, sondern insbesondere auch von der Verknüpfung des Hörkortex’ mit übergeordneten Hirnstrukturen, die Gedächtnisinformationen verarbeiten», fasst Lutz Jäncke zusammen. Auf der Grundlage dieser Befunde könne es möglich werden, Trainingsmassnahmen abzuleiten, welche die Hörleistungen im Alter aber auch im Zusammenhang mit verschiedenen Hörbeeinträchtigungen verbessern würden.

Literatur:
Stefan Elmer, Lars Rogenmoser, Jürg Kühnis und Lutz Jäncke. Bridging the gap between perceptual and cognitive perspectives on absolute pitch. The Journal of Neuroscience, 6. Januar, 2015. Doi: 10.1523/JNEUROSCI.3009-14.2015

Kontakt:
Prof. Lutz Jäncke
Psychologisches Institut / Neuropsychologie
Universität Zürich
Tel. +41 44 635 74 00
E-Mail: l.jaencke@psychologie.uzh.ch

Bettina Jakob
Media Relations
Universität Zürich
Tel. +41 44 634 44 39
E-Mail: bettina.jakob@kommunikation.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

Weitere Nachrichten aus der Kategorie Gesellschaftswissenschaften:

nachricht Deutschland altert unterschiedlich
22.05.2017 | Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR)

nachricht Sterblichkeit durch Rauchen für ostdeutsche Frauen bald höher als für westdeutsche
10.05.2017 | Max-Planck-Institut für demografische Forschung

Alle Nachrichten aus der Kategorie: Gesellschaftswissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

WHZ erhält hochmodernen Prüfkomplex für Schraubenverbindungen

23.05.2017 | Maschinenbau

«Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung

23.05.2017 | Biowissenschaften Chemie

Tumult im trägen Elektronen-Dasein

23.05.2017 | Physik Astronomie