Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlenstoffumsatz in Ökosystemen wird durch Landnutzung doppelt so schnell

23.08.2016

Um Klimawandel zu verstehen und weitere Entwicklungen verlässlicher vorhersagen zu können, ist mehr Wissen über den globalen Kohlenstoffkreislauf nötig. Bisher ist weitgehend unbekannt, wie lange Kohlenstoff in der Biomasse verbleibt, bevor er wieder in den Kreislauf, also in die Atmosphäre oder Böden, weitergegeben wird (biomass turnover time), und welche Faktoren diese zentrale Größe beeinflussen. Eine aktuelle Publikation in Nature Geoscience zeigt nun, dass sich die Geschwindigkeit des Kohlenstoffumsatzes in der Vegetation durch den Einfluss des Menschen verdoppelt.

„Eine der größten derzeitigen Unsicherheiten bei unserem Verständnis des Klimawandels betrifft die biomass turnover time, ein zentraler Ökosystemparameter, der bestimmt, wieviel Kohlenstoff der Atmosphäre durch die Ökosysteme entzogen wird und damit zentral für den Klimawandel ist“, erläutert Karl-Heinz Erb (Institut für Soziale Ökologie), der nun erstmals, gemeinsam mit seinen Kolleginnen und Kollegen, den Einfluss der Landnutzung des Menschen auf diese Umwandlungszeit berechnet hat. Dazu wurde die Veränderung des Kohlenstoffumsatzes durch einen Vergleich der aktuellen Vegetation mit einem Status, der hypothetisch jede Landnutzung ausschließt, errechnet.


Traktor für Kohlenstoffumsatz

Dusan-Kostic-Fotolia

Quelle: Alpen-Adria-Universität Klagenfurt

Die Ergebnisse, aktuell vorgestellt in Nature Geoscience, zeigen nun, dass der Kohlenstoffumsatz durch die Landnutzung doppelt so schnell abläuft. Erb erklärt weiter: „Die Beschleunigung betrifft alle Biome und ungefähr in gleicher Weise, aber es gibt entscheidende Unterschiede zwischen den Landnutzungstypen.

Die Umwandlung von Wald in Agrarflächen führt zu massiven Beschleunigungseffekten, aber auch die Nutzung von Wäldern und natürlichen Grasländern ist bedeutsam, wenn auch pro Flächeneinheit deutlich geringer. Aber deren Flächen sind, global gesehen, deutlich größer. Daher ist in Summe der Umbruch von Wäldern zu landwirtschaftlichen Flächen für 59 Prozent, die Forstwirtschaft für 26 Prozent und die Nutzung der natürlichen Weideflächen für 15 Prozent der Beschleunigung verantwortlich.

Insbesondere die Nutzung der Wälder und der natürlichen Grasländer ist in vielen Studien nicht berücksichtigt, und gerade hier ist die Datenlagen äußerst dürftig. Die Studie zeigt, dass ein verbessertes Wissen um die Nutzung dieser Ökosysteme zentral ist, um beispielweise die Vorhersagemöglichkeiten von Klimaentwicklungen zu erhöhen.“

Gefragt danach, was diese Beschleunigung des Kohlenstoffkreislaufs nun für den Menschen bedeute, führt Erb aus: „Wir wissen derzeit zwar, dass, aber noch nicht, wie viel sich dies auf den Klimawandel auswirkt.“ Sicher sei, dass der Bedarf an Biomasse derzeit massiv steigt, was zu einer weiteren Beschleunigung des Kohlenstoffkreislaufs führen könne.

Damit könnte die Senkenfunktion der Ökosysteme, also ihre Fähigkeit, Kohlenstoff der Atmosphäre zu entziehen und langfristig zu speichern, mehr und mehr verloren gehen. Diese Ergebnisse würden, so die AutorInnen, deutlich zeigen, dass Biomasse als Ressource nicht klimawandelneutral sei.

Erb, K.-H., Fetzel, T., Plutzar, C., Kastner, T., Lauk, C., Mayer, A., Niedertscheider, M., Körner, C., Haberl, H. (2016). Biomass turnover time in terrestrial ecosystems halved by land use. Nature Geoscience, 22. August 2016.

Weitere Informationen:

http://www.aau.at

Dr. Romy Müller | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics