"Rauchende" Regenwolken über dem Amazonas

Waldbrand im südlichen Teil des Amazonasbeckens, aufgenommen im September 2002. Eine so genannte "Pyro-Wolke" bildet sich direkt oberhalb der "Rauchfahne" des Feuers. <br>Bild: M. Welling, Max-Planck-Institut für Chemie

Waldbrände im Amazonas-Gebiet verstärken Wetterturbulenzen und haben globale Auswirkungen, berichten Mainzer Max-Planck-Forscher

Großflächige Brandrodungen überziehen das Amazonasbecken jedes Jahr während der Trockenzeit, insbesondere in den Monaten September und Oktober, mit dichtem Rauch. Erste Ergebnisse von SMOCC (Smoke, Clouds, and Climate), einem internationalen Forschungsprojekt unter Leitung von Prof. Dr. Meinrat O. Andreae vom Max-Planck-Institut für Chemie in Mainz, zeigen nun, dass die Auswirkungen des Rauchs dieser Brände auf Wetter und Klima wesentlich größer sind als bisher bekannt. Der Rauch beeinflusst Wolkenbildung und Niederschläge und führt zu Gewitterstürmen und Hagel. Die veränderten Wolkeneigenschaften führen auch zu einer Erwärmung von höheren Schichten der Atmosphäre, was globale Auswirkungen auf das Klima haben könnte (Science, 27. Februar 2004).

Kleine Partikel in der Luft, so genannte Aerosole, sind von großer Bedeutung für die Wolkenbildung. Durch Kondensation von Wasserdampf an diesen Partikeln bilden sich Wolkentröpfchen, und ohne Aerosole in der Atmosphäre können sich keine Wolken bilden. Aerosolpartikel werden sowohl durch natürliche als auch durch von Menschen beeinflusste Prozesse gebildet. Seit der industriellen Revolution hat die Zahl der von Menschen erzeugten Partikel in der Atmosphäre drastisch zugenommen. Daher steht der Einfluss der Aerosole auf die Atmosphäre und das Klima seit Jahrzehnten im Mittelpunkt des wissenschaftlichen Interesses. Eine direkte Auswirkung ist, dass diese Partikel das Sonnenlicht reflektieren und damit die Aufheizung der Erdoberfläche durch die Sonne verringern. Dies bedeutet eine Abkühlung der Atmosphäre.

Eine weitere Auswirkung ist, dass die Partikel die Eigenschaften der Wolken und des Niederschlags verändern können. Dies führt schließlich auch zu einem Abkühleffekt. Insgesamt könnten diese Abkühleffekte im Laufe des letzten Jahrhunderts einen beträchtlichen Anteil der Erwärmung durch Treibhausgase kompensiert haben.

Die Anzahl der Partikel in der Atmosphäre ist unter natürlichen Bedingungen ziemlich klein. Daher ist auch die Konzentration der Wolkentröpfchen gering, wenn sich Wolken in sauberer Luft bilden. In verschmutzter Luft dagegen ist die Anzahl von Aerosolpartikeln und damit auch die der Wolkentröpfchen viel größer. Wolken mit einer höheren Anzahl von Tröpfchen reflektieren stärker das Sonnenlicht und haben daher – genau wie bei der direkten Aerosolwirkung – einen Abkühleffekt auf die Erde.

Da die Menge kondensierbaren Wasserdampfes aber gleich bleibt, muss mit steigender Anzahl der Tröpfchen ihre Größe sinken. Nun stoßen kleinere Tröpfchen nicht so leicht zusammen, was aber eine Voraussetzung für die Bildung von Niederschlag ist. Tausende von Wolkentröpfchen müssen verschmelzen um einen Tropfen zu bilden, der groß und schwer genug ist, um als Regentropfen zur Erde zu fallen. Dieser Aspekt bildet den Schwerpunkt des wissenschaftlichen Projekts SMOCC. „Wir möchten besser verstehen, in welcher Weise sich die riesige Menge von Rauchpartikeln, erzeugt durch Brandrodungen im Amazonasgebiet, auf Wolken, Wetter und Klima auswirkt“, meint Prof. Andreae.

Die Max-Planck-Forscher fanden heraus, dass der anthropogen erzeugte Rauch tatsächlich die Tröpfchengröße in den Wolken dramatisch herabsetzt. Dadurch wurde die Niederschlagsbildung unterdrückt; wenn sie doch erfolgte, verschob sich die Entstehung des Niederschlags von etwa 1500 Meter oberhalb der Wolkenbasis in unverschmutzten Wolken auf mehr als 7000 Meter in Pyro-Wolken (siehe Abb. 1). Auch so genannte „Rauchwolken“, die aus dem verschmutzten Rauchdunst herauswuchsen, zeigten eine beträchtliche Unterdrückung und Verzögerung der Niederschlagsbildung.

Die verzögerte Niederschlagsbildung führt zu einem Wärmetransport in höhere Schichten der Atmosphäre. Wärme wird freigesetzt, wenn Wasserdampf an den Aerosolpartikeln kondensiert und wenn das flüssige Wasser zu Eis gefriert. Bei den größeren Höhen ist es kalt genug, um das Wasser auszufrieren. Dabei freigesetzte Wärme verstärkt den Aufwind und führt zu stärkeren Turbulenzen. Dies kann Gewitterstürme, Blitze, schwere Schauer und Hagel hervorrufen. Bis zu zwei Zentimeter große Hagelkörner wurden bei dieser Art von Wolken am Boden beobachtet.

Ein weiterer Effekt der unterdrückten und verzögerten Niederschlagsbildung ist, dass die in großer Höhe freigesetzte Wärme zu beträchtlichen Änderungen in der regionalen und globalen Luftzirkulation führen kann. Aerosolpartikel, Wasserdampf und gasförmige Verschmutzungen können durch diese Wolken bis in große Höhen der Atmosphäre transportiert werden und sich damit über riesige Gebiete, möglicherweise sogar über den ganzen Globus verteilen. Daher könnten diese Effekte globale Auswirkungen haben, was Gegenstand künftiger Untersuchungen sein wird.

Originalveröffentlichung:

M. O. Andreae, D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo and M. A. F. Silva-Dias, Smoking rain clouds over the Amazon, Science, 303, 1337-1342, (27. Februar February 2004)

Weitere Informationen erhalten Sie von:

Prof. Meinrat O. Andreae
Max-Planck-Institut für Chemie, Mainz
Tel.: 06131 305-421, Fax: -487
E-Mail: andreae@mpch-mainz.mpg.de

Dr. Göran P. Frank
Max-Planck-Institut für Chemie, Mainz
Tel.: 06131 305-466, Fax: -487
E-Mail: gfrank@mpch-mainz.mpg.de

Media Contact

Dr. Andreas Trepte Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpch-mainz.mpg.de

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer