Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alterung von Aerosolen ermittelt

11.09.2012
Internationale Forschergruppe weist Alterung von organischen Aerosolen durch OH-Radikale nach – Klimamodelle sollten angepasst werden

Aerosolpartikel spielen für das Klima eine bedeutende Rolle. Ein internationales Forscherteam hat jetzt herausgefunden, dass ein chemischer Prozess in der Atmosphäre, der als Alterung bezeichnet wird, die Konzentration und die Eigenschaften von Aerosolteilchen stark beeinflusst. Dies wurde in regionalen und globalen Klimamodellen bislang nicht berücksichtigt.


Untersuchte Prozesse im Rahmen des MUCHACHAS-Projekts. Quelle/©: AG Hoffmann, JGU

Mit der Muchachas-Studie (Multiple Chamber Aerosol Chemical Aging Study) hat das Forscherteam den Einfluss der Alterung nicht nur nachgewiesen, sondern auch quantifiziert. Die Ergebnisse wurden in der Fachzeitschrift Proceedings of the National Academy of Sciences of the USA (PNAS) veröffentlicht.

Aerosolpartikel spielen eine entscheidende Rolle für die Luftqualität und werden als Feinstaub für eine Reihe von Atemwegserkrankungen sowie Herz- und Kreislaufbeschwerden verantwortlich gemacht. Darüber hinaus beeinflussen Aerosolpartikel auf verschiedenen Wegen den Strahlungshaushalt der Atmosphäre. So tragen Aerosole über Streuung, Reflektion und Absorption von Sonnenlicht direkt zum Strahlungsbudget der wolkenlosen Atmosphäre bei. Zudem spielen Aerosole eine essentielle Rolle bei der Wolkenbildung in der Troposphäre, indem sie als Kondensationskerne schon bei relativ geringen Wasserdampfübersättigungen eine Tröpfchenbildung ermöglichen.

Die Größe und Konzentration der Aerosolpartikel ist deshalb von unmittelbarer Bedeutung für die Zahl der Wolkentröpfchen, die ihrerseits das Reflektionsverhalten von Wolken beeinflusst. Damit kühlen Aerosolpartikel tendenziell die Atmosphäre. Allerdings sind die genauen Prozesse und Rückkopplungsmechanismen bisher nur unvollständig verstanden, sodass das Zusammenspiel zwischen Aerosolpartikeln, ihrer Eignung als Wolkenkondensationskerne und dem von der Erdoberfläche wieder reflektierten Sonnenlicht eine der größten Unsicherheiten bei der Berechnung des Klimaantriebs darstellt.

Das Muchachas-Projekt hat organische Aerosole untersucht, die einen Großteil der chemischen Zusammensetzung von luftgetragenen Partikeln ausmachen. Organische Aerosole entstehen beispielsweise über Wäldern, wo sie an manchen Orten wie den Great Smoky Mountains, Blue Ridges oder Blue Mountains als blauer Dunst wahrgenommen werden können. Gerade in dicht besiedelten Gebieten spielen aber auch anthropogen freigesetzte Kohlenwasserstoffe als Vorläufer zur sekundären organischen Aerosolbildung eine bedeutende Rolle.

Die Untersuchungen zeigten, dass Masse und Zusammensetzung von organischen Aerosolen durch OH-Radikale signifikant beeinflusst werden. OH-Radikale sind das wichtigste Oxidationsmittel der Atmosphäre und tragen ganz wesentlich zur Luftreinigung bei. Die Wissenschaftler aus Pittsburgh (USA), Jülich, Karlsruhe, Mainz, Göteborg, Kopenhagen und dem schweizerischen Villigen haben bei ihren Messungen in vier verschiedenen, großvolumigen atmosphärischen Simulationskammern gezeigt, dass der als Alterung bezeichnete Oxidationsprozess einen signifikanten Effekt hat und die Eigenschaften und Konzentration von organischen Aerosolen während ihres gesamten Zyklus in der Atmosphäre beeinflusst.
„Neue Klimamodelle werden diese Ergebnisse berücksichtigen müssen“, erwartet Univ.-Prof. Dr. Thomas Hoffmann vom Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität Mainz (JGU). Die Mainzer Forscher haben vor allem mit der Entwicklung analytischer Techniken zum Studium der chemischen Zusammensetzung der Aerosolpartikel zu der Muchachas-Studie beigetragen. Durch die Entwicklung sogenannter weicher Ionisationsverfahren und entsprechender Massenspektrometer konnte die Arbeitsgruppe um Hoffmann die Konzentrationen einzelner Molekülspezies in den Atmosphärensimulationskammern verfolgen und damit letztlich die Alterung des atmosphärischen Aerosols auf molekularer Basis verstehen. Dadurch ließ sich auch klar zeigen, dass die Oxidation in der Gas- und nicht der Partikelphase abläuft. „Jetzt gilt es, die zugrundeliegenden Reaktionen in regionale und globale atmosphären-chemische Modelle zu integrieren, um so die Diskrepanz zwischen den erwarteten und den tatsächlich beobachteten Konzentrationen organischer Aerosolpartikel zu verringern“, sagt Hoffmann.

Abbildungen:
http://www.uni-mainz.de/bilder_presse/09_anorganische_chemie_muchachas1.jpg
Untersuchte Prozesse im Rahmen des MUCHACHAS-Projekts
Quelle/©: AG Hoffmann, JGU

http://www.uni-mainz.de/bilder_presse/09_anorganische_chemie_muchachas2.jpg
Die Blue Mountains in Australien
Quelle/©: AG Hoffmann, JGU
http://www.uni-mainz.de/bilder_presse/09_anorganische_chemie_muchachas3.jpg
Online-Aerosolmassenspektrometer in einem Messcontainer während einer Messkampagne

Quelle/©: AG Hoffmann, JGU

Veröffentlichung:
Donahue et al.
Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions
PNAS, 21. August 2012
DOI: 10.1073/pnas.1115186109

Weitere Informationen:
Univ.-Prof. Dr. Thorsten Hoffmann
Institut für Anorganische Chemie und Analytische Chemie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-25716
Fax +49 6131 39-25336
E-Mail: t.hoffmann@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.ak-hoffmann.chemie.uni-mainz.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt
05.12.2016 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops