Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wunden mit Plasmen heilen: DFG fördert übergreifende Zusammenarbeit

22.11.2012
Da Bakterien gegen viele Medikamente inzwischen resistent geworden sind, könnte der Einsatz von Plasmen bei der Wundheilung die Alternative sein.

Ob und wie das funktioniert, erforschen Wissenschaftler der Ruhr-Universität Bochum (RUB) unter der Federführung von Prof. Dr. Peter Awakowicz zusammen mit Kollegen der Universitätskliniken Düsseldorf und Aachen.


Plasma-Wundbehandlung

© Lehrstuhl für Allgemeine Elektrotechnik und Plasmatechnik (AEPT)

Die Deutsche Forschungsgemeinschaft (DFG) fördert das Projekt „Plasma–Zell-Interaktionen in der Dermatologie (PlaCID)“ mit 1,3 Mio. Euro in den nächsten drei Jahren. Die RUB ist mit drei Lehrstühlen aus der Physik, der Chemie und den Ingenieurswissenschaften in dem Projekt vertreten.

Plasma-Zelle-Wechselwirkung
Der Einsatz von Plasmen in der Medizin, insbesondere in der Therapie von Wunden, ist eine vielversprechende Alternative zur herkömmlichen Medikation, vor allem weil die Erreger zunehmend Resistenzen gegen Wundmittel entwickeln, weshalb Wunden schlechter heilen bzw. sogar chronisch werden. Die Plasmen erzeugen einen Cocktail aus Radikalen, positiven und negativen Ionen sowie UV-Strahlung, der einen positiven Effekt auf die Heilung von Wunden haben könnte. Die Möglichkeit, kalte Plasmen bei Atmosphärendruck zu zünden und bei Temperaturen nahe der Raumtemperatur zu betreiben, macht eine direkte Behandlung am Menschen möglich. Allerdings ist die Wechselwirkung zwischen Plasma und Zellen bislang kaum verstanden und soll nun umfassend untersucht werden.

Quellen bestimmen, Reaktionen verstehen

Die Wissenschaftler wollen die Plasmaquellen detailliert bestimmen, um beispielsweise die Flüsse von Stickstoffmonoxid-Radikalen mit der Reaktion des behandelten Gewebes korrelieren zu können. Mit physikalischen, chemischen sowie molekularbiologischen Methoden untersuchen sie, wie Plasmen auf biologisches Material wirken, etwa auf Hautzellen, Hautgewebe, aber auch auf Talg oder Kollagen. Auf diese Weise können sie in der Folge die Mechanismen der Plasmabehandlung charakterisieren.

Kooperation von Ingenieuren, Chemikern, Physikern und Ärzten
Die Projektpartner der Plasmatechnik, Prof. Peter Awakowicz (Fakultät für Elektrotechnik und Informationstechnik), und Plasmaphysik, Dr. Volker Schulz von der Gathen (Fakultät für Physik und Astronomie), nehmen das Plasma genauer unter die Lupe und liefern die Dosen der einzelnen Bestandteile. Prof. Martina Havenith (Fakultät für Chemie und Biochemie), Prof. Christoph Suschek (Klinik für Unfall- und Handchirurgie, Universitätsklinikum Düsseldorf) und Dr. Christian Opländer (Klinik für Plastische Chirurgie, Hand- und Verbrennungschirurgie, Universitätsklinikum Aachen) untersuchen die mit den Plasmen behandelten Haut- bzw. Zellproben. Erst solch eine Kooperation verschiedener Disziplinen verspricht ein besseres Verständnis der Wechselwirkungen von Plasmabestandteilen mit den Reaktionen lebendiger Zellen.

Weitere Informationen

Prof. Peter Awakowicz, Ruhr-Universität Bochum, Lehrstuhl für Allgemeine Elektro- und Plasmatechnik, Fakultät für Elektrotechnik und Informationstechnik, Tel. 0234/32-22487, E-Mail: awakowicz@aept.rub.de

Redaktion: Dr. Josef König

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG fördert für weitere drei Jahre Forschungen zu Kieselalgen
22.03.2017 | Technische Universität Dresden

nachricht Effiziente Tools für bildgebende Studien
21.03.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie