Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zu billigerem Solarstrom - Innovationspreis Mikroelektronik geht an Fraunhofer IISB und SolarWorld AG

16.10.2009
Gemeinsam haben Forscher des Fraunhofer IISB Erlangen, des Fraunhofer THM Freiberg und der SolarWorld AG herausgefunden, wie sie durch den Einsatz von Magnetfeldern bei der industriellen Produktion von Siliziumkristallen für die Photovoltaik spezielle Materialfehler vermeiden können.

Diese Materialfehler sind schädlich für die Anwendung der Kristalle zur Erzeugung von Solarstrom. Für die gemeinsamen Forschungs- und Entwicklungsarbeiten wurde den Forschern am 15. Oktober 2009 der Georg Waeber Innovationspreis 2009 des Förderkreises für die Mikroelektronik e.V. verliehen.

Die Photovoltaik basiert heute und auch in Zukunft auf kristallinen Siliziumsolarzellen. Für deren Herstellung werden kostengünstige Siliziumkristalle mit maßgeschneiderten Eigenschaften benötigt, aus denen dünne Scheiben ("Wafer") für die Solarzellenfertigung geschnitten werden.

Die Siliziumkristalle, genannt Blöcke, entstehen durch kontrollierte Kristallisation aus der rund 1500°C heißen Siliziumschmelze. Ein wichtiges Wirtschaftlichkeitskriterium bei der Kristallisation der Siliziumblöcke ist die Waferausbeute pro Block. Diese wird neben anderen Faktoren durch den Gehalt an Kohlenstoff- und Stickstoff-Verunreinigungen im Silizium bestimmt.

Während des Erstarrungsprozesses des Siliziumblocks können nämlich durch die Wechselwirkung des Siliziums mit Einbauten der Ofenanlagen und dem Tiegelmaterial Materialfehler in Form von Siliciumcarbid- und Siliciumnitrid-Ausscheidungen entstehen. Diese sind aufgrund ihrer gegenüber Silizium größeren Härte problematisch für die anschließenden Sägeprozesse. Zudem können sie aufgrund der Ausbildung von Kurzschlussströmen den Wirkungsgrad der Solarzellen verschlechtern. Diese Bereiche müssen aussortiert werden und mindern somit die Waferausbeute pro Block.

Hier setzt das Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB an: Es forscht an seinem Hauptstandort in Erlangen sowie in seiner Außenstelle, dem Fraunhofer-Technologiezentrum für Halbleitermaterialien THM in Freiberg, im Auftrag des Industriepartners SolarWorld AG an einer Optimierung des Kristallisationsprozesses im Hinblick auf eine Vermeidung der Ausscheidungsbildung zur Erhöhung der Waferausbeute pro Block. Aufgabe war es, ein tiefgehendes Verständnis für die Mechanismen der Bildung dieser schädlichen Kristallfehler zu erarbeiten. Damit wurden die wissenschaftlichen Voraussetzungen geschaffen, um durch verfahrenstechnische Maßnahmen die unerwünschten Ausscheidungen bei der industriellen Fertigung von multikristallinen Siliziumkristallen zu reduzieren beziehungsweise ganz zu vermeiden.

Gemeinsam haben die Forscher von Fraunhofer und Industrie durch grundlegende experimentelle und theoretische Untersuchungen herausgefunden, dass eine "gut gerührte" Schmelze diese Ausscheidungsbildung verhindert. "Wir haben schon zu Beginn der Forschungsarbeiten vermutet, dass die Strömung in der Schmelze sehr wichtig für die Bildung der Materialfehler ist. In Zonen geringer Strömungsgeschwindigkeit im Bereich des fest-flüssig Phasenübergangs bei der Erstarrung des Siliziums können sich Verunreinigungen aufstauen und dann zu den Ausscheidungen im festen Silizium führen. Durch unsere Kristallisationsversuche im Labormaßstab und durch Computersimulation konnten wir diese Vermutung bestätigen", erläutert Dr. Jochen Friedrich vom Fraunhofer IISB. "Der Hebel, an dem wir ansetzen mussten, war also, diese "Totwasserzonen" in der Schmelze zu vermeiden. Dafür brauchten wir eine technische Lösung, die sich ohne größeren Aufwand auf die großen Produktionsanlagen umsetzen lässt", ergänzt Dr. Bernhard Freudenberg von der Solarworld AG.

Um diese Bedingungen in der industriellen Produktion zu erreichen, entwickelten die Forscher die Idee, optimierte Magnetfelder zur Beeinflussung der Strömung in der Siliziumschmelze zu nutzen. Mit Unterstützung von Computersimulation und speziellen Messtechniken wurden die Produktionsanlagen so optimiert, dass die Totwasserzonen während der Kristallisation vermieden und die Ausbeute deutlich gesteigert werden konnte. Die damit einhergehende Kostenreduktion ist eine wichtige Voraussetzung, dass sich das Wachstum der Photovoltaik auch in den nächsten Jahren fortsetzt.

Stellvertretend für die Forschungsteams am Fraunhofer IISB und THM sowie bei der SolarWorld AG, die zu diesen Entwicklungen maßgeblich beigetragen haben, wurden Dr. Bernhard Freudenberg, Direktor Wafertechnologie bei der SolarWorld Innovations GmbH in Freiberg, einer hundertprozentigen Tochter der SolarWorld AG, und Dr. Jochen Friedrich, Leiter der Abteilung Kristallzüchtung des Fraunhofer IISB in Erlangen und Leiter des Fraunhofer THM in Freiberg, mit dem Georg Waeber Innovationspreis 2009 ausgezeichnet. Die vom Förderkreis für die Mikroelektronik e.V. ausgeschriebene Auszeichnung wurde am 15. Oktober 2009 im Rahmen der Jahrestagung des Fraunhofer-Instituts für Integrierte Systeme und Bauelementetechnologie IISB an die Preisträger überreicht.

Die Arbeiten zur elektromagnetischen Beeinflussung der Schmelzbadbewegung wurden gemeinsam von der Deutschen Solar AG als Antragsteller und dem Fraunhofer THM als Unterauftragnehmer im Rahmen des Projektes KOWÄSTO durchgeführt. Fortgeführt wurden die Untersuchungen im Rahmen des HiQuaSil-Projektes durch beide Einrichtungen als Verbundpartner. Beide Vorhaben wurden zum einen vom Europäischen Regional-Entwicklungs-Fond (ERDF) und zum anderen vom Wirtschafts- und Arbeitsministerium des Landes Sachsen gefördert.

Ansprechpartner:
Dr. Jochen Friedrich
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB
Schottkystraße 10, 91058 Erlangen, Germany
Tel. +49-9131-761-269
Fax +49-9131-761-280
info@iisb.fraunhofer.de
www.iisb.fraunhofer.de
Fraunhofer IISB:
Das 1985 gegründete Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB betreibt angewandte Forschung und Entwicklung auf den Gebieten der Mikro- und Nanoelektronik, Leistungselektronik und Mechatronik. Mit Technologie-, Geräte- und Materialentwicklungen für die Nanoelektronik sowie seinen Arbeiten zu leistungselektronischen Systemen für Energieeffizienz, Hybrid- und Elektroautomobile genießt das Institut internationale Aufmerksamkeit und Anerkennung. Rund 150 Mitarbeiterinnen und Mitarbeiter arbeiten in der Vertragsforschung für die Industrie und öffentliche Einrichtungen. Neben seinem Hauptsitz in Erlangen hat das IISB zwei weitere Standorte in Nürnberg und Freiberg. Das IISB arbeitet eng mit dem Lehrstuhl für Elektronische Bauelemente an der Universität Erlangen-Nürnberg zusammen.

Dr. Bernd Fischer | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.iisb.fraunhofer.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht „Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges
26.06.2017 | Kompetenzzentrum - Das virtuelle Fahrzeug Forschungsgesellschaft mbH

nachricht Hochschule Karlsruhe: mit speichenlosem Fahrrad Kreativwettbewerb gewonnen
26.06.2017 | Hochschule Karlsruhe - Technik und Wirtschaft

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie