Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universität Stuttgart erhält 750.000 Euro für Projekthaus NanoBioMater

05.08.2013
Förderung durch Carl-Zeiss-Stiftung

Kurze Wege, gemeinsame Nutzung von Infrastruktur und ein Team vernetzter Köpfe, die über den eigenen Tellerrand hinwegschauen ─ das ist das Erfolgsrezept des Projekthauses NanoBioMater der Universität Stuttgart, in dem gemeinsam von Biologen, Chemikern, Materialwissenschaftlern und Ingenieuren intelligente biokompatible Funktionsmaterialien für die Medizintechnik, Diagnostik und Umweltanalytik entwickelt werden. Die Carl-Zeiss-Stiftung ermöglicht das Projekt mit einer Fördersumme von 750.000 Euro.

Prof. Wolfram Ressel dankte der Carl-Zeiss-Stiftung für die Förderungszusage und sagte: „Das Projekthaus NanoBioMater bündelt bisher bestehende erfolgreiche Einzelinitiativen und bilaterale Kooperationen im Bereich der Biomaterialien rund um die Universität Stuttgart. Die Fördersumme von 750.000 Euro bietet nicht nur die Chance, die internationale Sichtbarkeit der Stuttgarter materialwissenschaftlichen Aktivitäten zu erhöhen, sondern das Projekthaus NanoBioMater soll auch durch zielführende Vorarbeiten die Basis für eine erfolgreiche Einwerbung eines künftigen Transregio-Sonderforschungsbereiches bei der DFG bieten.“

Unter der Federführung von Prof. Sabine Laschat (Institut für Organische Chemie) und Prof. Thomas Hirth (Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie) soll im Projekthaus NanoBioMater ein Kernteam aus zwei Hochschullehrern, Prof. Christina Wege (Biologisches Institut) und Prof. Günter Tovar (Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie und Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik), sowie drei interdisziplinär arbeitenden Postdoktoranden die Entwicklung von neuen Hydrogelen als Funktionsmaterialien vorantreiben.

Natürliche Biomaterialien wurden im Laufe der Evolution hervorgebracht und optimiert. Sie sind skalenübergreifend von der molekularen Ebene im Nanomaßstab über Meso-, Mikro- bis hin zu Makro-Größenordnungen in Zusammensetzung und Struktur auf ihre natürlichen Funktionen abgestimmt. Um erkrankte Organe zu unterstützen oder sogar zu ersetzen, konzentriert sich die Medizintechnik heute vorwiegend auf harte synthetische Materialien wie Metalle, Keramiken oder Polymere sowie auf Hybridmaterialien aus diesen Komponenten.

Der menschliche Körper ist jedoch aus Geweben aufgebaut, welche aus zellulären und extrazellulären, komplex aufgebauten Biomaterialien bestehen. Wasser macht 70 % der menschlichen Körpermasse aus; biologische Substanzen treten deshalb überwiegend in Form hydrogelartiger Strukturen auf, die per se weiche Materie darstellen. Hydrogel-basierte Materialien, die biokompatibel und in nahezu beliebigen Strukturen und Formen herstellbar wären, eröffnen daher den Weg zu dringend erforderlichen er¬gänzenden Komponenten bis hin zum ganzen Organ. Aufgrund der demographischen Entwicklung, der abnehmenden Verfügbarkeit sowie den Risiken von Spenderorganen, und um die Zahl an Tierversuchen zu reduzieren, besteht ein stetig steigender Bedarf an solchen "maßgeschneiderten "künstlichen Geweben" auf Hydrogel-Basis.

Diese sind zudem eine ideale Matrix für bio¬chemische Erkennungs- und Katalysereaktionen, welche eine Diagnostik mit bioaffinen Peptiden und Antikörpern sowie enzymatische Aktivitäten ermöglichen. So stellen sie auch wichtige Komponenten miniaturisierter Biosensoren und "Lab-on-a-Chip"-Systeme für die Umwelt-, Lebensmittel- und Medizinanalytik dar.

Im Fokus der Stuttgarter Forscher, die von Kolleginnen und Kollegen der Institute für Materialwissenschaften, Physikalische Chemie, Polymerchemie, Technische Biochemie und des Max-Planck-Instituts für Intelligente Systeme sowie durch eine Vielzahl externer Kooperationen mit wissenschaftlichen Einrichtungen und Firmen unterstützt werden, steht dabei zunächst das molekulare Design der Hydrogele, d.h. neue synthetische Polymersysteme und niedermolekulare Quervernetzer sollen entwickelt, Monomer-Bausteine opti¬miert und zu neuen Hydrogelen umgesetzt werden, welche die resultierende Gel-Struktur und deren Quellbarkeit und Elastizität kontrollieren. Geeignete Materialtypen werden dann zur Entwicklung von Hydrogelformulierungen mit erweitertem Anwendungspotential genutzt.

So werden beispielsweise superporöse Hydrogele hergestellt, die als Speicher oder Reaktionsräume dienen können. Durch neue Verarbeitungsverfahren für die porösen Hydrogel¬systeme, insbesondere Sprühtrocknung und Inkjet-Druck, werden räumlich definierte makroskopi¬sche Systeme für verschiedene Applikationen entwickelt. Pflanzenvirusderivate (z.B. vom Tabakmosaikvirus abgeleitet) dienen hierbei als robuste und zugleich "intelligente" Gerüstkomponenten und können dem Hydrogel maßgeschneiderte sensorische Eigenschaften verleihen oder es in ein Transportsystem für Medikamente verwandeln. Mineralisationsvermittelnde Peptide, die der Natur aus den Haftproteinen von Muscheln und Seepocken "abgeschaut" wurden, sowie mineral-abscheidende Zellen mariner Organismen (Korallen, Seeigel) sollen dazu genutzt werden, die Porösität der Gele zu beeinflussen und lokal gehärtete Gelkapseln herzustellen.

Neben der wissenschaftlichen Bearbeitung stellt das Projekthaus NanoBioMater darüber hinaus die notwendige Infrastruktur an Geräten und analytischen Instrumenten zur Verfügung, kümmert sich um Fragen der Biokompatibilität und stellt Kontakte zu Anwendern, externen Kooperationspartnern und Industrieunternehmen her. Für den wissenschaftlichen Nachwuchs, kooperierende Forscher und Firmen, internationale Experten und interessierte Gäste werden Tagungen und Workshops ausgerichtet.

Weitere Informationen:

Prof. Sabine Laschat, Universität Stuttgart, Institut für Organische Chemie,
Tel. 0711/685-64565, E-Mail: sabine.laschat [at] oc.uni-stuttgart.de
Prof. Thomas Hirth, Universität Stuttgart, Institut für Grenzflächenverfahrenstechnik
und Plasmatechnologie,
Tel. 0711/970-4400, E-Mail:thomas.hirth [at] igb.fraunhofer.de
Dr. Hans-Herwig Geyer, Universität Stuttgart, Hochschulkommunikation,
Tel. 0711/685-82555, E-Mail: hans-herwig.geyer [at] hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Rudolf-Virchow-Preis 2017 – wegweisende Forschung zu einer seltenen Form des Hodgkin-Lymphoms
23.06.2017 | Deutsche Gesellschaft für Pathologie e.V.

nachricht Repairon erhält Finanzierung für die Entwicklung künstlicher Herzmuskelgewebe
23.06.2017 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften