Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universität Stuttgart erhält 750.000 Euro für Projekthaus NanoBioMater

05.08.2013
Förderung durch Carl-Zeiss-Stiftung

Kurze Wege, gemeinsame Nutzung von Infrastruktur und ein Team vernetzter Köpfe, die über den eigenen Tellerrand hinwegschauen ─ das ist das Erfolgsrezept des Projekthauses NanoBioMater der Universität Stuttgart, in dem gemeinsam von Biologen, Chemikern, Materialwissenschaftlern und Ingenieuren intelligente biokompatible Funktionsmaterialien für die Medizintechnik, Diagnostik und Umweltanalytik entwickelt werden. Die Carl-Zeiss-Stiftung ermöglicht das Projekt mit einer Fördersumme von 750.000 Euro.

Prof. Wolfram Ressel dankte der Carl-Zeiss-Stiftung für die Förderungszusage und sagte: „Das Projekthaus NanoBioMater bündelt bisher bestehende erfolgreiche Einzelinitiativen und bilaterale Kooperationen im Bereich der Biomaterialien rund um die Universität Stuttgart. Die Fördersumme von 750.000 Euro bietet nicht nur die Chance, die internationale Sichtbarkeit der Stuttgarter materialwissenschaftlichen Aktivitäten zu erhöhen, sondern das Projekthaus NanoBioMater soll auch durch zielführende Vorarbeiten die Basis für eine erfolgreiche Einwerbung eines künftigen Transregio-Sonderforschungsbereiches bei der DFG bieten.“

Unter der Federführung von Prof. Sabine Laschat (Institut für Organische Chemie) und Prof. Thomas Hirth (Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie) soll im Projekthaus NanoBioMater ein Kernteam aus zwei Hochschullehrern, Prof. Christina Wege (Biologisches Institut) und Prof. Günter Tovar (Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie und Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik), sowie drei interdisziplinär arbeitenden Postdoktoranden die Entwicklung von neuen Hydrogelen als Funktionsmaterialien vorantreiben.

Natürliche Biomaterialien wurden im Laufe der Evolution hervorgebracht und optimiert. Sie sind skalenübergreifend von der molekularen Ebene im Nanomaßstab über Meso-, Mikro- bis hin zu Makro-Größenordnungen in Zusammensetzung und Struktur auf ihre natürlichen Funktionen abgestimmt. Um erkrankte Organe zu unterstützen oder sogar zu ersetzen, konzentriert sich die Medizintechnik heute vorwiegend auf harte synthetische Materialien wie Metalle, Keramiken oder Polymere sowie auf Hybridmaterialien aus diesen Komponenten.

Der menschliche Körper ist jedoch aus Geweben aufgebaut, welche aus zellulären und extrazellulären, komplex aufgebauten Biomaterialien bestehen. Wasser macht 70 % der menschlichen Körpermasse aus; biologische Substanzen treten deshalb überwiegend in Form hydrogelartiger Strukturen auf, die per se weiche Materie darstellen. Hydrogel-basierte Materialien, die biokompatibel und in nahezu beliebigen Strukturen und Formen herstellbar wären, eröffnen daher den Weg zu dringend erforderlichen er¬gänzenden Komponenten bis hin zum ganzen Organ. Aufgrund der demographischen Entwicklung, der abnehmenden Verfügbarkeit sowie den Risiken von Spenderorganen, und um die Zahl an Tierversuchen zu reduzieren, besteht ein stetig steigender Bedarf an solchen "maßgeschneiderten "künstlichen Geweben" auf Hydrogel-Basis.

Diese sind zudem eine ideale Matrix für bio¬chemische Erkennungs- und Katalysereaktionen, welche eine Diagnostik mit bioaffinen Peptiden und Antikörpern sowie enzymatische Aktivitäten ermöglichen. So stellen sie auch wichtige Komponenten miniaturisierter Biosensoren und "Lab-on-a-Chip"-Systeme für die Umwelt-, Lebensmittel- und Medizinanalytik dar.

Im Fokus der Stuttgarter Forscher, die von Kolleginnen und Kollegen der Institute für Materialwissenschaften, Physikalische Chemie, Polymerchemie, Technische Biochemie und des Max-Planck-Instituts für Intelligente Systeme sowie durch eine Vielzahl externer Kooperationen mit wissenschaftlichen Einrichtungen und Firmen unterstützt werden, steht dabei zunächst das molekulare Design der Hydrogele, d.h. neue synthetische Polymersysteme und niedermolekulare Quervernetzer sollen entwickelt, Monomer-Bausteine opti¬miert und zu neuen Hydrogelen umgesetzt werden, welche die resultierende Gel-Struktur und deren Quellbarkeit und Elastizität kontrollieren. Geeignete Materialtypen werden dann zur Entwicklung von Hydrogelformulierungen mit erweitertem Anwendungspotential genutzt.

So werden beispielsweise superporöse Hydrogele hergestellt, die als Speicher oder Reaktionsräume dienen können. Durch neue Verarbeitungsverfahren für die porösen Hydrogel¬systeme, insbesondere Sprühtrocknung und Inkjet-Druck, werden räumlich definierte makroskopi¬sche Systeme für verschiedene Applikationen entwickelt. Pflanzenvirusderivate (z.B. vom Tabakmosaikvirus abgeleitet) dienen hierbei als robuste und zugleich "intelligente" Gerüstkomponenten und können dem Hydrogel maßgeschneiderte sensorische Eigenschaften verleihen oder es in ein Transportsystem für Medikamente verwandeln. Mineralisationsvermittelnde Peptide, die der Natur aus den Haftproteinen von Muscheln und Seepocken "abgeschaut" wurden, sowie mineral-abscheidende Zellen mariner Organismen (Korallen, Seeigel) sollen dazu genutzt werden, die Porösität der Gele zu beeinflussen und lokal gehärtete Gelkapseln herzustellen.

Neben der wissenschaftlichen Bearbeitung stellt das Projekthaus NanoBioMater darüber hinaus die notwendige Infrastruktur an Geräten und analytischen Instrumenten zur Verfügung, kümmert sich um Fragen der Biokompatibilität und stellt Kontakte zu Anwendern, externen Kooperationspartnern und Industrieunternehmen her. Für den wissenschaftlichen Nachwuchs, kooperierende Forscher und Firmen, internationale Experten und interessierte Gäste werden Tagungen und Workshops ausgerichtet.

Weitere Informationen:

Prof. Sabine Laschat, Universität Stuttgart, Institut für Organische Chemie,
Tel. 0711/685-64565, E-Mail: sabine.laschat [at] oc.uni-stuttgart.de
Prof. Thomas Hirth, Universität Stuttgart, Institut für Grenzflächenverfahrenstechnik
und Plasmatechnologie,
Tel. 0711/970-4400, E-Mail:thomas.hirth [at] igb.fraunhofer.de
Dr. Hans-Herwig Geyer, Universität Stuttgart, Hochschulkommunikation,
Tel. 0711/685-82555, E-Mail: hans-herwig.geyer [at] hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen
06.12.2016 | Technische Universität Clausthal

nachricht Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen
05.12.2016 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut WKI

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie