Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Raum und Zeit bewegt

24.11.2010
Sonderforschungsbereich/Transregio 7 „Gravitationswellenastronomie“ wird mit acht Mio. Euro für weitere vier Jahre von der Deutschen Forschungsgemeinschaft gefördert

(Gemeinsame Pressemitteilung der Friedrich-Schiller-Universität Jena, der Eberhard Karls Universität Tübingen, der Leibniz Universität Hannover und der Max-Planck-Institute für Gravitationsphysik sowie für Astrophysik)

„Gravitationswellen gehören zur Gravitation wie Lichtwellen zum Elektromagnetismus.“ Das sagt Prof. Dr. Bernd Brügmann von der Friedrich-Schiller-Universität Jena. Gravitationswellenastronomie mache da weiter, wo die Astronomie mit elektromagnetischen Wellen an ihre Grenzen stoße, erläutert der Inhaber des Lehrstuhls für Gravitationstheorie. „So tragen Gravitationswellen etwa Informationen über Schwarze Löcher, aus dem Innersten von Supernova-Explosionen oder gar vom Urknall, der Geburt unseres Universums.“ Allerdings sind sie extrem schwierig zu messen.

Die Deutsche Forschungsgemeinschaft (DFG) hat dem Sonderforschungsbereich/Transregio 7 (SFB/TR7) „Gravitationswellenastronomie“ jetzt rund acht Millionen Euro bewilligt. „Damit kann der Forschungsverbund seine 2003 begonnene erfolgreiche Arbeit bis 2014 fortsetzen und unter anderem 30 Wissenschaftlerstellen finanzieren“, freut sich Prof. Brügmann, der Sprecher des Forschungsverbundes ist. Dem SFB/TR7 gehören Wissenschaftler der Friedrich-Schiller-Universität Jena, der Eberhard Karls Universität Tübingen, der Leibniz Universität Hannover und der Max-Planck-Institute für Gravitationsphysik in Hannover und Potsdam sowie für Astrophysik in Garching an. In den 17 Teilprojekten arbeiten insgesamt rund 80 Physiker, Astronomen und Mathematiker, die in den kommenden vier Jahren weiter „Jagd“ auf die Gravitationswellen machen werden.

Der SFB/TR7 hat einen positiven Effekt für den wissenschaftlichen Nachwuchs in Deutschland. Er ermöglicht die Clusterbildung, international renommierte Spitzenforscher an die beteiligten Universitäten und Institute zu holen und den Physikernachwuchs speziell in Gravitationsphysik und Relativistischer Astrophysik auszubilden.

Ziel des SFB/TR7 ist es, Gravitationswellen direkt zu messen und sie theoretisch und experimentell zu erforschen. „Diese Wellen sind Schwingungen von Raum und Zeit, die von gewaltigen kosmischen Ereignissen ausgelöst werden“, erläutert Prof. Dr. Kostas Kokkotas von der Eberhard Karls Universität Tübingen. Bereits 1916 von Albert Einstein in seiner Allgemeinen Relativitätstheorie vorausgesagt, lassen sie sich bis heute nur indirekt nachweisen, etwa als Energieverluste von Objekten, die Gravitationswellen abstrahlen. „Neutronensterne, extrem kompakte Objekte, die am Ende der Entwicklung eines Sterns entstehen können, sind solche Objekte“, erklärt Prof. Kokkotas. „Neutronensterne sind sehr interessante Quellen für Gravitationsstrahlung, vor allem, wenn sie sehr schnell rotieren. Um ihre Strahlung nachzuweisen, muss man sehr genau wissen, wie diese Strahlung aussieht, und unter welchen Bedingungen sie erzeugt wird. Dazu führen wir aufwändige Simulationsrechnungen durch.“

Dass es bisher noch nicht gelungen ist, Gravitationswellen direkt zu messen, liegt vor allem an der sehr geringen Intensität dieser Signale. Doch ein Durchbruch ist in Sicht: „Ab 2012 wird bei den großen amerikanischen Detektoren die besonders ausgefeilte Lasertechnik installiert, die wir u. a. auch am deutsch-britischen Gravitationswellendetektor GEO600 in Ruthe bei Hannover auch im Rahmen des SFB/TR7 entwickelt haben. Ab 2015 werden diese Detektoren so empfindlich sein, dass der Nachweis dann innerhalb weniger Jahre gelingen müsste“, so Prof. Dr. Karsten Danzmann von der Leibniz Universität Hannover, die GEO600 betreibt. Danzmann ist auch Direktor am Max-Planck-Institut für Gravitationsphysik in Potsdam und Hannover.

Für die nächste Generation der Detektoren haben die Wissenschaftler des SFB/TR7 neuartige optische Komponenten in bisher unerreichter Qualität entwickelt. Brügmann und seinen Kollegen ist es in den zurückliegenden ersten beiden Förderperioden des SFB/TR7 außerdem gelungen, die Bewegung zweier Schwarzer Löcher umeinander in ihrer dynamischsten Phase mit hoher Genauigkeit zu berechnen.

Öffentlichkeitsarbeit
Im Rahmen des SFB/TR7 gibt es ein Projekt für Öffentlichkeitsarbeit, um die Arbeit an diesem komplexen Thema auch für Nichtwissenschaftler bekannt und zugänglich zu machen. Dafür werden öffentliche Veranstaltungen organisiert, eine mobile Ausstellung, das „Einstein-Wellen-Mobil“, besucht Institutionen wie Schulen oder Planetarien, und eine begleitende Webseite steht für Informationen zur Verfügung. Alle Aktivitäten in diesem Projekt wollen unterhalten und gleichzeitig wissenschaftliche Substanz vermitteln. Interessenten können sich dem Thema auf spielerische Weise nähern, finden aber immer auch ein Angebot an tiefer gehenden Erklärungen.
Kontakt:
Prof. Dr. Bernd Brügmann
Theoretisch-Physikalisches Institut der Universität Jena
Fröbelstieg 1, 07743 Jena
Tel.: 03641 / 947111 oder 947100
E-Mail: Bernd.Bruegmann[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://wwwsfb.tpi.uni-jena.de
http://www.einsteinwelle.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Mikrophotonik – Optische Technologien auf dem Weg in die Hochintegration
21.07.2017 | VDI Technologiezentrum GmbH

nachricht 1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext
20.07.2017 | Hochschule RheinMain

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungsnachrichten

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungsnachrichten

Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln

24.07.2017 | Biowissenschaften Chemie