Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Forschergruppe will Hirn-Schaltkreise nachbauen

08.10.2014

Deutsche Forschungsgemeinschaft fördert Verbundprojekt von Uni Bochum, Hamburg-Harburg, Kiel und Helmholtz-Institut Ulm mit 2 Millionen Euro

Wissenschaftlerinnen und Wissenschaftler der Ruhr-Universität Bochum, der Technischen Universität Hamburg-Harburg, des Helmholtz-Institutes Ulm und der Christian-Albrechts-Universität zu Kiel (CAU) wollen gemeinsam Lern- und Gedächtnisprozesse des menschlichen Gehirns technisch nachbilden. Wie die Deutsche Forschungsgemeinschaft in der vergangenen Woche bekannt gab, unterstützt sie das Projekt mit zwei Millionen Euro für die ersten drei Jahre


Mitarbeiter der Kieler Arbeitsgruppe Nanoelektronik entwickeln memristive Bauelemente für neuronale Schaltungen. Mit der Sputteranlage werden ultradünne Schichten eines Werkstoffs hergestellt.

Copyright/Foto: AG Nanoelektronik

Computer und Gehirn: rechnen versus schätzen
Trotz stetig leistungsfähigerer Computer ist das Gehirn noch immer in vielen Bereichen der effizienteste Rechner der Welt. Das liegt daran, dass sich die Informationsverarbeitung jeweils stark unterscheidet. Die Technik trennt Datenspeicherung und Logik streng voneinander und mathematische Probleme werden in kleine logische Schritte unterteilt, die dann möglichst schnell wiederholt abgearbeitet werden. Unser Gehirn hingegen erkennt sprachliche und visuelle Muster, führt aber keine genau definierten Rechenschritte durch. Vielmehr „schätzt“ es und kann so sich fortlaufend ändernde und teilweise lückenhaft eingehende Informationen verknüpfen. Ein gigantisches Netzwerk aus etwa 100 Milliarden Neuronen, von denen jedes einzelne über 1000 Synapsen mit anderen Neuronen verbunden ist, ist daran beteiligt.

Lernen und Gedächtnis beruhen darauf, dass sich dieses Netzwerk durch neue Informationen ständig verändert. Hierbei werden Verbindungen über Synapsen gestärkt, andere aber auch geschwächt. Das führt zu einem weiteren Vorteil biologischer Datenverarbeitung: Das Gehirn ist in der Lage zu abstrahieren und Erfahrungen auf neue Situationen anzuwenden.

Künstliche Intelligenz durch neuartige Bauteile
Moderne Computer funktionieren im Prinzip genauso wie ihre Vorläufer in den vierziger Jahren des letzten Jahrhunderts. „Die digitale Revolution, man denke an Internet und Smartphone, begründet sich auf der enormen Steigerung der Informationsverarbeitung in Transistoren und der Möglichkeit, riesige Datenmengen zu speichern“, sagt Physiker Professor Hermann Kohlstedt von der Uni Kiel, Sprecher der neuen Forschergruppe FOR 2093. „Unser Ziel ist eine echte technische Revolution, nämlich die Nachbildung biologischer Lern- und Gedächtnisprozesse.“

Für dieses ehrgeizige Ziel nehmen sich die Forschenden den Hippocampus vor. Dieser Teil des Gehirns ist insbesondere für die Gedächtnisbildung extrem wichtig. Fachwissen darüber steuert die Neurologie des Kieler Universitätsklinikums (UKSH) bei. „Neurowissenschaftler verstehen immer besser wie das Gehirn funktioniert, von der molekularen Ebene bis hin zur Verschaltung ganzer Hirnbereiche", sagt Professor Thorsten Bartsch, Neurologe am UKSH und Mitglied der Forschergruppe.

Einfach technisch nachbauen lassen sich aber selbst schlichtere neuronale Schaltkreise nicht. Um speziell den trisynaptischen Schaltkreis nachzubilden, will die Forschergruppe neuartige Bauteile entwickeln. „Memristive Bauelemente bieten einen interessanten Ansatz, elektronische Schaltungen aufzubauen, die ihrem biologischen Pendant näher kommen als alles bisher entwickelte“, erzählt Dr. Martin Ziegler aus der Nanoelektronik der Kieler Uni. Sogenannte Memristoren sind passive elektrische Bauteile, deren ohmscher Widerstand nicht konstant ist, sondern von ihrer elektrischen „Vorgeschichte“ abhängt. Das Bauteil merkt sich wie viele Ladungen in welche Richtungen geflossen sind und stellt seinen Widerstand entsprechend ein.

Mit ihrem Projekt „Memristive Bauelemente für neuronale Schaltungen“ schlägt die Forschergruppe eine Brücke zwischen Grundlagenforschung und Anwendungsorientierung. Dr. Thomas Mussenbrock, Elektrotechniker an der Universität Bochum und stellvertretender Sprecher des Verbunds, ist vom Erfolg des Forschungsvorhabens überzeugt: „Ich bin mir sicher, dass es uns durch die hier beabsichtigte enge und fachübergreifende Zusammenarbeit zwischen Neurologen, Systemtheoretikern sowie der Materialwissenschaft und Nanoelektronik gelingen wird, neurobiologische Schaltungsprinzpien in technische Systeme zu übertragen."

Weitere Informationen zur Forschergruppe:
http://www.tf.uni-kiel.de/etit/NANO/forschung3.htm

Fotos und Abbildungen stehen zum Download zur Verfügung:
http://www.uni-kiel.de/download/pm/2014/2014-304-1.jpg
Bildunterschrift: Mitarbeiter der Kieler Arbeitsgruppe Nanoelektronik entwickeln memristive Bauelemente für neuronale Schaltungen. Mit der Sputteranlage (Foto) werden ultradünne Schichten eines Werkstoffs hergestellt.
Copyright/Foto: AG Nanoelektronik

http://www.uni-kiel.de/download/pm/2014/2014-304-2.jpg
Bildunterschrift: Mit Hilfe von Monte-Carlo-Simulationen treffen die Forschenden Aussagen über das Verhalten von möglicherweise geeigneten Bauteilen. Wichtig für die Entwicklung memristiver Elemente ist es zu wissen, wie sich der Widerstand eines Materials ändert. Zu sehen ist die räumliche Verteilung der Aufenthaltswahrscheinlichkeit der Silberatome während des Filamentwachstums. Rot bedeutet hohe Aufenthaltswahrscheinlichkeit, blau bedeutet niedrige Aufenthaltswahrscheinlichkeit.
Copyright/Abbildung: Martin Ziegler

http://www.uni-kiel.de/download/pm/2014/2014-304-3.jpg
Bildunterschrift: Ergebnis einer kinetischen Monte-Carlo-Simulation des Wachstums leitfähiger Silberfilamente. Silberionen driften in einem von außen anliegenden elektrischen Feld von oben nach unten. Die Ionen reagieren mit einer Platinschicht (unten) und bilden letztendlich leitfähige Silberfilamente.
Copyright/Abbildung: Thomas Mussenbrock

Kontakt:
Christian-Albrechts-Universität zu Kiel
Institut für Elektrotechnik und Informationstechnik, AG Nanoelektronik,
Prof. Dr. Hermann Kohlstedt
Tel: 0431/880-6075, hko@tf.uni-kiel.de
http://www.tf.uni-kiel.de/etit/NANO/index.htm

Ruhr-Universität Bochum
Fakultät für Elektrotechnik und Informationstechnik
Lehrstuhl für Theoretische Elektrotechnik
Priv. Doz. Dr. Thomas Mussenbrock
Tel.: 0234/32-26338, thomas.mussenbrock@rub.de
http://homepage.rub.de/thomas.mussenbrock

Dr. Boris Pawlowski | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht »Die Oberfläche 2018« – Fünf Nominierungen gehen in die Endrunde
18.05.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht DFG fördert Entwicklung innovativer Forschungssoftware an der Universität Bremen
17.05.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics