Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fünf Millionen für die Weiterentwicklung der Magnetresonanztomographie dank Nanodiamanten

23.12.2015

Eine von der Uni Ulm aus koordinierte Forschergruppe hat im Zuge des EU-Projekts HYPERDIAMOND 5 Millionen Euro für vier Jahre eingeworben (Ulmer Anteil rund 1,6 Millionen Euro). Mit Quantentechnologie will die Gruppe um Professor Martin Plenio die Magnetresonanztomographie verbessern. Eine wichtige Rolle spielen dabei hyperpolarisierte, nanometergroße Diamanten. Diese sollen in einem MRT-Scanner ein milliardenfach stärkeres Signal erzeugen. So lassen sich eventuell schon bald Stoffwechselprozesse detailliert verfolgen. Diese kostengünstige Technologie ist für Forschung und Medikamentenentwicklung gleichermaßen interessant.

Schon jetzt ermöglicht die Magnetresonanztomographie (MRT) eine erstaunlich genaue Darstellung von inneren Organen und Geweben ohne Strahlenbelastung. Dank Quantentechnologie lassen sich eventuell schon bald Stoffwechselprozesse, die etwa den Erfolg einer Krebstherapie anzeigen, detailliert verfolgen und quantifizieren.


MRT-Gerät an der Universitätsklinik Ulm

Foto: Grandel/Uniklinik Ulm

Diese Weiterentwicklung, bei der hyperpolarisierte, nanometergroße Diamanten eine wichtige Rolle spielen, ist für Diagnostik, Forschung und Medikamentenentwicklung gleichermaßen interessant. Im Zuge des EU-Projekts HYPERDIAMOND haben Forscher um die Ulmer Professoren Martin Plenio, Tanja Weil, Fedor Jelezko und Volker Rasche nun rund fünf Millionen Euro für vier Jahre eingeworben – in dem hochselektiven Verfahren waren nur zwei Prozent der Anträge erfolgreich.

Ab Januar will die Gruppe vor allem ein Gerät entwickeln, das die chemisch funktionalisierte Polarisation von Nanodiamanten ermöglicht. Diese sollen in einem MRT-Scanner ein milliardenfach stärkeres Signal erzeugen.

Die Stärke des MRT-Signals wird durch die Polarisation von Kernspins im Körper bestimmt, die wiederum durch hochleistungsfähige Magnete in entsprechenden Scannern erreicht wird. Dank der so genannten Hyperpolarisation – darunter versteht man die geordnete Ausrichtung von Kernspins – lässt sich die Empfindlichkeit der Magnetresonanztomographie noch einmal um das 10 000-fache steigern.

Solche hochleistungsfähigen Verfahren, die schon heute bei der Einschätzung von Tumoren eingesetzt werden, sind allerdings zeitaufwändig, teuer und funktionieren nur bei tiefen Temperaturen. Ein neuer Ansatz aus Ulm will diese Nachteile dank Quantentechnologie umgehen.

Eine wichtige Rolle spielen dabei extrem reine, künstliche Diamanten: In ihren Stickstofffehlstellenzentren kann der Elektronenspin mittels Laserlicht polarisiert werden. Nun wollen die Forscher diese Polarisation mithilfe von Mikrowellenstrahlung auf Kernspins in Diamanten oder in externe Moleküle übertragen, um sie zu hyperpolarisieren. So soll die effiziente Darstellung molekularer Prozesse bei hoher räumlicher Auflösung möglich werden.

Im Physiklabor konnten Professor Fedor Jelezko, Leiter des Instituts für Quantenoptik, und Professor Martin Plenio (Leiter Institut für Theoretische Physik) diese Hyperpolarisation bereits erzeugen und nachweisen. Inzwischen haben die Wissenschaftler ihre Idee zum Patent angemeldet und wollen sie in die Anwendung tragen. Das neue Verfahren zur Hyperpolarisation ist übrigens ein unerwartetes Nebenprodukt des Projekts BioQ, in dem Plenio, Jelezko und Weil quantentechnologische Anwendungen in der Sensorik, Messtechnik und Bildgebung entwickeln – gefördert durch einen Synergy Grant des Europäischen Forschungsrats über 10,3 Millionen Euro.

In naher Zukunft will die interdisziplinäre Forschergruppe aus den Bereichen Quantenphysik, Materialwissenschaften, bioorganische Chemie sowie medizinische Bildgebung zwei Neuheiten im Bereich Hyperpolarisation entwickeln und auf den Markt bringen. Der „Diamond Hyperpolarizer“ soll eine kosten- und zeitsparende Lösung auf Basis von Nanodiamanten bieten: Das teure Kryostat und die supraleitenden Magnete, die aktuell zum Standard gehören, werden durch einen günstigen Diodenlaser und ein Mikrowellenresonator-System ersetzt.

„Letztlich kann die Hyperpolarisation bei Raumtemperatur innerhalb weniger Minuten anstatt 60 bis 90 Minuten durchgeführt werden“, sagen die Forscher. Dazu kommt zweitens die Entwicklung hyperpolarisierter Nanodiamanten, die – zum Beispiel an Antikörper und Signalpeptide geheftet – als Marker für MRT-Scanner eingesetzt werden können.

So könnte eine Empfindlichkeit erreicht werden, die dem teuren „Goldstandardverfahren“ Positronen-Emissions-Tomographie (PET) in nichts nachsteht. Da die Nanodiamanten für viele Minuten im Zustand der Hyperpolarisation verbleiben, ist eine längere Beobachtung molekularer Prozesse möglich. Radiologen könnten zum Beispiel die Aufnahme von Antikörpern in Krebszellen engmaschig und hochselektiv beobachten.

„Die geringeren Kosten und Anforderungen an die Infrastruktur sind klare Pluspunkte unserer Technologie und werden neuartige Experimente ermöglichen – zum Beispiel in der Medikamentenentwicklung. Auf längere Sicht kann unser Verfahren zur weiteren Verbreitung der hyperpolarisierten Bildgebung in der Krankenversorgung beitragen“, erklärt Projektkoordinator Professor Martin Plenio.

Die Ulmer Wissenschaftler, zu denen auch Professorin Tanja Weil (Leiterin Institut für Organische Chemie III) und der Spezialist für bildgebende Verfahren, Professor Volker Rasche von der Universitätsklinik für Innere Medizin II, zählen, haben mit der Hebrew University of Jerusalem, dem Karlsruher Institut für Technologie (KIT), dem Austrian Institute of Technology sowie der Universität Tours starke universitäre Partner an ihrer Seite.

Dazu kommen die Industrievertreter van Moppes und Kanfit Ltd im Bereich der Diamant- und der Magnetentwicklung sowie das unter Beteiligung von Jelezko und Plenio gegründete Startup „NVision Imaging Technologies“, mit denen der Sprung in die Anwendung gelingen soll. Der Anteil der Uni Ulm an HYPERDIAMOND beträgt fast 1,6 Millionen Euro.

„Diese innovativen interdisziplinären Aktivitäten erfolgreicher Ulmer Wissenschaftler sind ein hervorragendes Beispiel, wie hochwertige Technologien aus der Wissenschaft in medizinische Anwendungen umgesetzt werden können. Durch zielgerichteten Technologietransfer kann ein deutlicher Mehrwert für die Krankenversorgung geschaffen werden. Gleichzeitig profitiert der Schwerpunkt Quantentechnologie enorm von dieser Entwicklung“, freut sich Universitätspräsident Professor Michael Weber.

Weitere Informationen:

Prof. Dr. Martin Plenio: 0731/50-22900, martin.plenio@uni-ulm.de
Prof. Dr. Tanja Weil: 0731 50-22870, tanja.weil@uni-ulm.de

Annika Bingmann | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-ulm.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Über zwei Millionen für bessere Bordnetze
28.04.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Innovationspreis 2017 der Deutschen Hochschulmedizin e.V.
24.04.2017 | Deutsche Hochschulmedizin e.V.

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie