Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

F.-Ulrich Hartl erhält Herbert Tabor Forschungspreis

19.04.2013
Proteine sind die molekularen Baustoffe und Maschinen der Zelle und an praktisch allen Lebensprozessen beteiligt.

Für seine Forschung im Bereich der Proteinfaltung erhält F.-Ulrich Hartl, Direktor am Max-Planck-Institut für Biochemie in Martinsried bei München zusammen mit seinem amerikanischen Kollegen Arthur L. Horwich von der Yale School of Medicine den diesjährigen Herbert Tabor Forschungspreis der American Society for Biochemistry and Molecular Biology (ASBMB).

Die mit 30.000 US-Dollar (ca. 23.200 Euro) dotierte Ehrung würdigt exzellente Forschung im Feld der Biochemie und Molekularbiologie und wird an herausragende Mitglieder der Vereinigung übergeben.

Hartl und Horwich haben als erste Wissenschaftler eine Gruppe von Proteinen, sogenannte Chaperone, identifiziert und charakterisiert. Diese wichtigen molekularen Maschinen helfen anderen Proteinen sich korrekt in ihre dreidimensionale Struktur zu falten. Die beiden Wissenschaftler entschlüsselten nicht nur die Funktion, sondern auch die Struktur und den vollständigen molekularen Wirkmechanismus dieser Proteingruppe. Da die fehlerhafte Faltung von Proteinen auch eine Rolle bei neurodegenerativen Krankheiten wie Alzheimer und Parkinson spielt, könnten die Ergebnisse in Zukunft einen wesentlichen Beitrag zur Entwicklung neuer Wirkstoffe für die Behandlung dieser Krankheiten leisten.

“Die Auszeichnung mit dem Herbert Tabor Preis freut uns und zeigt uns, dass eine große Gemeinschaft von Biochemikern und Molekularbiologen, vertreten durch die ASBMB, unsere Forschung auf dem Gebiet der Proteinfaltung sehr würdigt“, sagt Ulrich Hartl. Die ASBMB ist mit über 12.000 Mitgliedern weltweit eine der wichtigsten wissenschaftlichen Vereinigungen. Im Zuge der Preisverleihung am 20. April 2013 in Boston, werden beide Wissenschaftler jeweils eine Award Lecture halten und den Preis entgegen nehmen.

Kontakt:

Prof. Dr. F.-Ulrich Hartl
Zelluläre Biochemie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: uhartl[a]biochem.mpg.de
www.biochem.mpg.de/hartl

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel.: +49 89 8578-2824
E-Mail: konschak[a]biochem.mpg.de
Weitere Informationen:
http://www.biochem.mpg.de/hartl
- Webseite der Abteilung "Zelluläre Biochemie" (Prof. Hartl)
http://www.biochem.mpg.de/news/pressroom/index.html
- Pressemitteilungen des MPI für Biochemie

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie