Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Exzellente Kernphysik aus Darmstadt - 1,5 Millionen Euro für TU-Kernphysiker Achim Schwenk

28.06.2012
Achim Schwenk, Professor für Kernphysik an der TU Darmstadt, ist vom Europäischen Forschungsrat (ERC) mit einem „Starting Independent Researcher Grant“ in der Kategorie „Consolidator“ für sein Forschungsprojekt „The strong interaction at neutron-rich extremes“ (STRONGINT) ausgezeichnet worden. Schwenk erhält mit 1,5 Millionen Euro die höchstmögliche Fördersumme.

Mit der Auszeichnung gehört der 37-jährige Professor zu einer Forscher-Elite: Das einzige Kriterium für die Vergabe der ERC Grants ist wissenschaftliche Exzellenz. In Deutschland gab es seit 2007 nur 205 Forscher, die einen ERC Starting Grant erhalten haben. "In der Kernphysik bricht eine neue Ära an", sagt der Physiker. Das theoretische Lehrbuch werde gerade neu geschrieben, und Darmstadt schreibt mit.

Zwei bahnbrechende Entwicklungen bereiten Schwenk und den Wissenschaftlern, die er mit den Mitteln des ERC-Grants beschäftigen will, den Boden. Erstens haben Astrophysiker in letzter Zeit erstaunliche Entdeckungen gemacht, etwa den schwersten bislang gefundenen Neutronenstern. Dieser ist doppelt so schwer wie unsere Sonne, hat aber nur etwa den Durchmesser Darmstadts. Die Materie im Innern wird durch den Gravitationsdruck derart komprimiert, dass fast alle Elektronen von Protonen eingefangen werden und so extreme Dichten von Neutronen entstehen.

Neutronen stellen mit Protonen die Bausteine von Atomkernen und Materie dar. Dabei ist nur wenig über die Struktur neutronenreicher Kerne bekannt. Die Grundlagenforschung versucht weltweit diese neue Physik zu entschlüsseln. Das ist die zweite Entwicklung, über die der junge Wissenschaftler so begeistert ist: "Wenn wir in fünf Jahren mit unseren Berechnungen zu neutronenreichen Kernen und Materie fertig sein werden, werden am neuen Forschungszentrum FAIR bei der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt einzigartige Experimente möglich sein", sagt Schwenk. FAIR (Facility for Antiproton and Ion Research) wird Atomkerne mit derartiger Wucht aufeinander schleudern, dass extrem neutronenreiche Kerne und Materie untersucht werden können, die Neutronensternen am nächsten kommen. Bei FAIR wird dann die Theorie der neutronenreichen Materie, die Schwenk mit dem ERC-Grant entwickeln will, getestet werden können. "Der ERC-Grant kommt also genau zum richtigen Zeitpunkt", freut sich der Darmstädter Forscher.

Seine Forschung widmet sich einer der vier Grundkräfte der Natur, der so genannten Starken Wechselwirkung, welche die Neutronen und Protonen im Atomkern zusammenhält. Das Akronym STRONGINT steht für "The strong interaction at neutron-rich extremes". Es geht also um die Frage, wie die Starke Wechselwirkung sich bei extremem Neutronenüberschuss im Labor und im Universum auswirkt. "Wir wollen den Mikrokosmos und den Makrokosmos zusammenbringen", sagt Schwenk. Er will also die theoretische Beschreibung von besonders neutronenreichen Kernen und von neutronenreicher Materie in der Astrophysik vereinheitlichen.

Damit verbunden wären erhebliche Erkenntnisgewinne. Neutronenreiche Atomkerne spielen für die Entstehung schwerer Elemente eine zentrale Rolle. Ihr Verständnis wird die Entstehung jenes Sternenstaubes besser beleuchten, von dem auch das Leben auf der Erde abhängt. Außerdem erwartet Schwenk, präzise Einblicke in die Eigenschaften von Atomkernen und Neutronensternen zu erhalten. "Das ist so, weil die Kräfte zwischen Neutronen in systematischen Theorien stark eingeschränkt sind."

Dies konnte Schwenk für Kalzium-Kerne beeindruckend zeigen. Dabei spielen Kräfte zwischen drei Teilchen eine entscheidende Rolle. Die Rechnungen von Schwenk und Mitarbeitern haben vorhergesagt, dass neutronenreiche Kalzium-Kerne stärker gebunden sind als das experimentell der Fall zu sein schien. "Präzisionsmessungen mit Atomfallen haben erst vor kurzem unsere Vorhersagen bestätigt. Mit STRONGINT werden wir jetzt in neue Regionen vordringen."

Der mehrfach ausgezeichnete Physiker - unter anderem erhielt er den ARCHES-Preis des Bundesministeriums für Bildung und Forschung und den Athene-Preis für gute Lehre an der TU Darmstadt - hat seit Ende der 1990er Jahre in den USA und in Kanada studiert und geforscht. Trotz der sehr guten Bedingungen dort hat er sich 2009 entschlossen, die Professur an der TU Darmstadt und im Rahmen der Helmholtz Exzellenzinitiative ExtreMe Matter Institute (EMMI) anzunehmen. „Die Bedingungen in der Kernphysik in Darmstadt sind einzigartig, sehr dynamisch und die Studenten sind super", sagt er. "Und das wird mit dem ERC Starting Grant nur noch besser!"

Pressekontakt
Prof. Dr. Achim Schwenk
Tel.: 06151/16-64235, schwenk@physik.tu-darmstadt.de
Hinweis an die Redaktionen
Ein hochauflösendes Foto von Professor Schwenk können Sie unter dem Link www.tu-darmstadt.de/pressebilder herunterladen.

MI-Nr. 53/2012, Meier/csi

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Mikrophotonik – Optische Technologien auf dem Weg in die Hochintegration
21.07.2017 | VDI Technologiezentrum GmbH

nachricht 1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext
20.07.2017 | Hochschule RheinMain

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten