Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Exzellente Kernphysik aus Darmstadt - 1,5 Millionen Euro für TU-Kernphysiker Achim Schwenk

28.06.2012
Achim Schwenk, Professor für Kernphysik an der TU Darmstadt, ist vom Europäischen Forschungsrat (ERC) mit einem „Starting Independent Researcher Grant“ in der Kategorie „Consolidator“ für sein Forschungsprojekt „The strong interaction at neutron-rich extremes“ (STRONGINT) ausgezeichnet worden. Schwenk erhält mit 1,5 Millionen Euro die höchstmögliche Fördersumme.

Mit der Auszeichnung gehört der 37-jährige Professor zu einer Forscher-Elite: Das einzige Kriterium für die Vergabe der ERC Grants ist wissenschaftliche Exzellenz. In Deutschland gab es seit 2007 nur 205 Forscher, die einen ERC Starting Grant erhalten haben. "In der Kernphysik bricht eine neue Ära an", sagt der Physiker. Das theoretische Lehrbuch werde gerade neu geschrieben, und Darmstadt schreibt mit.

Zwei bahnbrechende Entwicklungen bereiten Schwenk und den Wissenschaftlern, die er mit den Mitteln des ERC-Grants beschäftigen will, den Boden. Erstens haben Astrophysiker in letzter Zeit erstaunliche Entdeckungen gemacht, etwa den schwersten bislang gefundenen Neutronenstern. Dieser ist doppelt so schwer wie unsere Sonne, hat aber nur etwa den Durchmesser Darmstadts. Die Materie im Innern wird durch den Gravitationsdruck derart komprimiert, dass fast alle Elektronen von Protonen eingefangen werden und so extreme Dichten von Neutronen entstehen.

Neutronen stellen mit Protonen die Bausteine von Atomkernen und Materie dar. Dabei ist nur wenig über die Struktur neutronenreicher Kerne bekannt. Die Grundlagenforschung versucht weltweit diese neue Physik zu entschlüsseln. Das ist die zweite Entwicklung, über die der junge Wissenschaftler so begeistert ist: "Wenn wir in fünf Jahren mit unseren Berechnungen zu neutronenreichen Kernen und Materie fertig sein werden, werden am neuen Forschungszentrum FAIR bei der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt einzigartige Experimente möglich sein", sagt Schwenk. FAIR (Facility for Antiproton and Ion Research) wird Atomkerne mit derartiger Wucht aufeinander schleudern, dass extrem neutronenreiche Kerne und Materie untersucht werden können, die Neutronensternen am nächsten kommen. Bei FAIR wird dann die Theorie der neutronenreichen Materie, die Schwenk mit dem ERC-Grant entwickeln will, getestet werden können. "Der ERC-Grant kommt also genau zum richtigen Zeitpunkt", freut sich der Darmstädter Forscher.

Seine Forschung widmet sich einer der vier Grundkräfte der Natur, der so genannten Starken Wechselwirkung, welche die Neutronen und Protonen im Atomkern zusammenhält. Das Akronym STRONGINT steht für "The strong interaction at neutron-rich extremes". Es geht also um die Frage, wie die Starke Wechselwirkung sich bei extremem Neutronenüberschuss im Labor und im Universum auswirkt. "Wir wollen den Mikrokosmos und den Makrokosmos zusammenbringen", sagt Schwenk. Er will also die theoretische Beschreibung von besonders neutronenreichen Kernen und von neutronenreicher Materie in der Astrophysik vereinheitlichen.

Damit verbunden wären erhebliche Erkenntnisgewinne. Neutronenreiche Atomkerne spielen für die Entstehung schwerer Elemente eine zentrale Rolle. Ihr Verständnis wird die Entstehung jenes Sternenstaubes besser beleuchten, von dem auch das Leben auf der Erde abhängt. Außerdem erwartet Schwenk, präzise Einblicke in die Eigenschaften von Atomkernen und Neutronensternen zu erhalten. "Das ist so, weil die Kräfte zwischen Neutronen in systematischen Theorien stark eingeschränkt sind."

Dies konnte Schwenk für Kalzium-Kerne beeindruckend zeigen. Dabei spielen Kräfte zwischen drei Teilchen eine entscheidende Rolle. Die Rechnungen von Schwenk und Mitarbeitern haben vorhergesagt, dass neutronenreiche Kalzium-Kerne stärker gebunden sind als das experimentell der Fall zu sein schien. "Präzisionsmessungen mit Atomfallen haben erst vor kurzem unsere Vorhersagen bestätigt. Mit STRONGINT werden wir jetzt in neue Regionen vordringen."

Der mehrfach ausgezeichnete Physiker - unter anderem erhielt er den ARCHES-Preis des Bundesministeriums für Bildung und Forschung und den Athene-Preis für gute Lehre an der TU Darmstadt - hat seit Ende der 1990er Jahre in den USA und in Kanada studiert und geforscht. Trotz der sehr guten Bedingungen dort hat er sich 2009 entschlossen, die Professur an der TU Darmstadt und im Rahmen der Helmholtz Exzellenzinitiative ExtreMe Matter Institute (EMMI) anzunehmen. „Die Bedingungen in der Kernphysik in Darmstadt sind einzigartig, sehr dynamisch und die Studenten sind super", sagt er. "Und das wird mit dem ERC Starting Grant nur noch besser!"

Pressekontakt
Prof. Dr. Achim Schwenk
Tel.: 06151/16-64235, schwenk@physik.tu-darmstadt.de
Hinweis an die Redaktionen
Ein hochauflösendes Foto von Professor Schwenk können Sie unter dem Link www.tu-darmstadt.de/pressebilder herunterladen.

MI-Nr. 53/2012, Meier/csi

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen
06.12.2016 | Technische Universität Clausthal

nachricht Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen
05.12.2016 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut WKI

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entschlüsseln, wie Pflanzen ihre Blätter abwerfen

09.12.2016 | Biowissenschaften Chemie

"Wächter des Genoms": Forscher aus Halle liefern neue Einblicke in die Struktur des Proteins p53

09.12.2016 | Biowissenschaften Chemie

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie