Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Exzellente Kernphysik aus Darmstadt - 1,5 Millionen Euro für TU-Kernphysiker Achim Schwenk

28.06.2012
Achim Schwenk, Professor für Kernphysik an der TU Darmstadt, ist vom Europäischen Forschungsrat (ERC) mit einem „Starting Independent Researcher Grant“ in der Kategorie „Consolidator“ für sein Forschungsprojekt „The strong interaction at neutron-rich extremes“ (STRONGINT) ausgezeichnet worden. Schwenk erhält mit 1,5 Millionen Euro die höchstmögliche Fördersumme.

Mit der Auszeichnung gehört der 37-jährige Professor zu einer Forscher-Elite: Das einzige Kriterium für die Vergabe der ERC Grants ist wissenschaftliche Exzellenz. In Deutschland gab es seit 2007 nur 205 Forscher, die einen ERC Starting Grant erhalten haben. "In der Kernphysik bricht eine neue Ära an", sagt der Physiker. Das theoretische Lehrbuch werde gerade neu geschrieben, und Darmstadt schreibt mit.

Zwei bahnbrechende Entwicklungen bereiten Schwenk und den Wissenschaftlern, die er mit den Mitteln des ERC-Grants beschäftigen will, den Boden. Erstens haben Astrophysiker in letzter Zeit erstaunliche Entdeckungen gemacht, etwa den schwersten bislang gefundenen Neutronenstern. Dieser ist doppelt so schwer wie unsere Sonne, hat aber nur etwa den Durchmesser Darmstadts. Die Materie im Innern wird durch den Gravitationsdruck derart komprimiert, dass fast alle Elektronen von Protonen eingefangen werden und so extreme Dichten von Neutronen entstehen.

Neutronen stellen mit Protonen die Bausteine von Atomkernen und Materie dar. Dabei ist nur wenig über die Struktur neutronenreicher Kerne bekannt. Die Grundlagenforschung versucht weltweit diese neue Physik zu entschlüsseln. Das ist die zweite Entwicklung, über die der junge Wissenschaftler so begeistert ist: "Wenn wir in fünf Jahren mit unseren Berechnungen zu neutronenreichen Kernen und Materie fertig sein werden, werden am neuen Forschungszentrum FAIR bei der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt einzigartige Experimente möglich sein", sagt Schwenk. FAIR (Facility for Antiproton and Ion Research) wird Atomkerne mit derartiger Wucht aufeinander schleudern, dass extrem neutronenreiche Kerne und Materie untersucht werden können, die Neutronensternen am nächsten kommen. Bei FAIR wird dann die Theorie der neutronenreichen Materie, die Schwenk mit dem ERC-Grant entwickeln will, getestet werden können. "Der ERC-Grant kommt also genau zum richtigen Zeitpunkt", freut sich der Darmstädter Forscher.

Seine Forschung widmet sich einer der vier Grundkräfte der Natur, der so genannten Starken Wechselwirkung, welche die Neutronen und Protonen im Atomkern zusammenhält. Das Akronym STRONGINT steht für "The strong interaction at neutron-rich extremes". Es geht also um die Frage, wie die Starke Wechselwirkung sich bei extremem Neutronenüberschuss im Labor und im Universum auswirkt. "Wir wollen den Mikrokosmos und den Makrokosmos zusammenbringen", sagt Schwenk. Er will also die theoretische Beschreibung von besonders neutronenreichen Kernen und von neutronenreicher Materie in der Astrophysik vereinheitlichen.

Damit verbunden wären erhebliche Erkenntnisgewinne. Neutronenreiche Atomkerne spielen für die Entstehung schwerer Elemente eine zentrale Rolle. Ihr Verständnis wird die Entstehung jenes Sternenstaubes besser beleuchten, von dem auch das Leben auf der Erde abhängt. Außerdem erwartet Schwenk, präzise Einblicke in die Eigenschaften von Atomkernen und Neutronensternen zu erhalten. "Das ist so, weil die Kräfte zwischen Neutronen in systematischen Theorien stark eingeschränkt sind."

Dies konnte Schwenk für Kalzium-Kerne beeindruckend zeigen. Dabei spielen Kräfte zwischen drei Teilchen eine entscheidende Rolle. Die Rechnungen von Schwenk und Mitarbeitern haben vorhergesagt, dass neutronenreiche Kalzium-Kerne stärker gebunden sind als das experimentell der Fall zu sein schien. "Präzisionsmessungen mit Atomfallen haben erst vor kurzem unsere Vorhersagen bestätigt. Mit STRONGINT werden wir jetzt in neue Regionen vordringen."

Der mehrfach ausgezeichnete Physiker - unter anderem erhielt er den ARCHES-Preis des Bundesministeriums für Bildung und Forschung und den Athene-Preis für gute Lehre an der TU Darmstadt - hat seit Ende der 1990er Jahre in den USA und in Kanada studiert und geforscht. Trotz der sehr guten Bedingungen dort hat er sich 2009 entschlossen, die Professur an der TU Darmstadt und im Rahmen der Helmholtz Exzellenzinitiative ExtreMe Matter Institute (EMMI) anzunehmen. „Die Bedingungen in der Kernphysik in Darmstadt sind einzigartig, sehr dynamisch und die Studenten sind super", sagt er. "Und das wird mit dem ERC Starting Grant nur noch besser!"

Pressekontakt
Prof. Dr. Achim Schwenk
Tel.: 06151/16-64235, schwenk@physik.tu-darmstadt.de
Hinweis an die Redaktionen
Ein hochauflösendes Foto von Professor Schwenk können Sie unter dem Link www.tu-darmstadt.de/pressebilder herunterladen.

MI-Nr. 53/2012, Meier/csi

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie