Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Doppelerfolg für IFW-Forscher: Zwei ERC Grants bewilligt

12.07.2012
Zwei junge Wissenschaftler des Leibniz-Instituts für Festkörper- und Werkstoffforschung Dresden (IFW) - der Chemiker Samuel Sanchez und der Physiker Denys Makarov – erhalten einen „Starting Grant“ des Europäischen Forschungsrates (ERC).
In einem zweistufigen Verfahren haben sich die Dresdner Wissenschaftler im Wettbewerb der europäischen Nachwuchselite erfolgreich behauptet. Sie erhalten für ihre Projekte eine Förderung von je rund 1,5 Millionen Euro, verteilt auf fünf Jahre.

Dr. Denys Makarov und Dr. Samuel Sanchez, beide Postdocs am Institut für Integrative Nanowissenschaften am IFW Dresden wurden vom Europäischen Forschungsrat für je einen der hochdotierten ERC Starting Grants ausgewählt. Sie konnten sich in der Ausschreibung für die europäische Nachwuchsforscherelite mit innovativen und bahnbrechenden Forschungsprojekten durchsetzen, der Physiker Dr. Denys Makarov mit dem Projekt "Shapeable Magnetoelectronics in Research and Technology" und der Chemiker Dr. Samuel Sanchez mit dem Projekt „Lab-in-a-tube and Nanorobotic biosensors“.

Für einen ERC Starting Grant können sich herausragende europäische Nachwuchsforscher bewerben. Neben einem exzellenten Forschungsantrag müssen die Wissenschaftler eine bisher beeindruckende und weiterhin vielversprechende wissenschaftliche Laufbahn nachweisen. Dr. Denys Makarov und Samuel Sanchez ist dies gelungen. Sie sind die ersten beiden Forscher des IFW Dresden, die mit einem „ERC Starting Grant“ ausgezeichnet werden. „Diese beiden Projekte zeigen in beeindruckender Weise, wie unkonventionelle Denkweisen und das Verlassen ausgetretener Pfade zu Durchbrüchen in Wissenschaft und Forschung führen. Ich freue mich sehr, dass es mit dem ERC eine europäische Institution gibt, die genau diese Art der wissenschaftlichen Exzellenz fördert.“ sagt Professor Oliver Schmidt, Direktor des Instituts für Integrative Nanowissenschaften im IFW Dresden.

Dr. Denys Makarov will mit seinem Projekt "Shapeable Magnetoelectronics in Research and Technology" das konventionelle Modell elektronischer Bauelemente durchbrechen und eine flexible und dehnbare Magnetoelektronik entwickeln. Diese Elemente haben die einzigartige Eigenschaft, nach ihrer Herstellung beliebig verformbar und damit vielseitig einsetzbar zu sein. Damit eignen sie sich besonders für die Anwendung in biomedizinischen Fluidsystemen, wo flexible Kanäle mit Biegungen und Windungen die Regel sind. Außerdem können flexible Magnetsensoren in andere, bereits bestehende flexible elektronische Bauelemente integriert werden, um magnetische Felder zu detektieren und auf sie zu reagieren.

Ein vielversprechendes Anwendungsgebiet für flexible Magnetoelektronik sieht Makarov in Elektromotoren und magnetischen Lagerungen. Dort sind dünne dehnbare Magnetsensoren den herkömmlichen Hall-Sensoren überlegen, da sie direkt in den schmalen gekrümmten Spalt zwischen Stator und Rotor platziert werden können, um das Magnetfeld in Echtzeit zu messen. Durch die Verwendung kostengünstiger elastischer Polymere als Substratmaterial sind die dehnbaren Magnetsensoren zudem deutlich billiger als die bisher üblichen Sensoren auf Halbleiterbasis.

Das Projekt von Dr. Samuel Sanchez mit dem Titel „Lab-in-a-tube and Nanorobotic biosensors“ verfolgt das Ziel, funktionale Mikroröhren aus aufgerollten Nanomembranen zu entwickeln und für Anwendungen in biologischen Systemen kompatibel zu machen. Die Mikroröhren sollen als 3D-Mikroreaktoren für lebende Zellen, als integrierbare Biosensoren und als selbst-angetriebene Nanomotoren dienen. Eine besondere Herausforderung für biomedizinische und umwelttechnische Anwendungen dieser neuen Technologie stellt dabei die Biokompatibilität der Nanomotoren und –transporter dar, für die neue Antriebsmechanismen und –agenzien gefunden werden müssen. Transparente Mikroröhren sind außerdem bestens geeignet, um das Verhalten lebender Zellen in einer Umgebung zu untersuchen, die der natürlichen Einbettung in eine dreidimensionale extrazelluläre Matrix sehr nah kommt. Damit werden Langzeituntersuchungen und Manipulationen von Zellkernteilung, DNA-Veränderung und Zelldifferenzierung möglich.

Beide Projekte wurden vom Europäischen Forschungsrat als besonders vielversprechend, innovativ und bahnbrechend beurteilt und werden nun über fünf Jahre mit je1,5 Millionen Euro unterstützt.

Der „ERC Starting Grant“ ist eine Förderlinie des Europäischen Forschungsrats für exzellente Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftler und wird seit 2008 vergeben. Das hoch kompetitive Programm ist themenoffen und hat seinen Schwerpunkt in der Grundlagen- und Pionierforschung. Einmal jährlich werden nach einer Ausschreibung die besten Projektideen zur Förderung ausgewählt. Hier erfolgreich zu sein, bedeutet eine große Auszeichnung für Wissenschaftler und ihre Forschung.

Pressekontakt:
Dr. Carola Langer
Referentin des Wissenschaftlichen Direktors
Tel. +49 351 4659-234
c.langer@ifw-dresden.de

Dr. Denys Makarov
Institut für Integrative Nanowissenschaften am IFW Dresden
Tel. +49 351 4659-648
d.makarov@ifw-dresden.de

Dr. Samuel Sanchez
Institut für Integrative Nanowissenschaften am IFW Dresden
Tel. +49 351 4659-845
s.sanchez@ifw-dresden.de

Dr. Carola Langer | idw
Weitere Informationen:
http://www.ifw-dresden.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Millionen für die Virenforschung
13.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht International ausgezeichnet! Rittal gewinnt „Cooling Oscar“
20.10.2016 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Feinstaub weckt schlafende Viren in der Lunge

16.01.2017 | Biowissenschaften Chemie

Energieeffizienter Gebäudebetrieb: Monitoring-Plattform MONDAS identifiziert Einsparpotenzial

16.01.2017 | Messenachrichten

Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?

16.01.2017 | Biowissenschaften Chemie