Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Biophysik zur Neurobiologie

18.06.2009
Wissenschaftspreis des Stifterverbandes für die Deutsche Wissenschaft an Prof. Dr. Ernst Bamberg, Direktor am Max-Planck-Institut für Biophysik in Frankfurt am Main

Der Biophysiker Ernst Bamberg wird für seine fundamentalen Arbeiten auf dem Gebiet der Membranbiophysik ausgezeichnet, die zur Entdeckung und neurobiologischen Anwendung lichtaktivierbarer Ionenkanäle, der sogenannten Channelrhodopsine geführt haben. Die Anwendung dieser einzigartigen Kanäle und der lichtgetriebenen Chloridpumpe Halorhodopsin hat eine Revolution in der Neurobiologie ausgelöst, da es jetzt möglich ist, Nervenzellen im Gehirn durch Licht ein- und abzuschalten. Mit der Entdeckung der Channelrhodopsine wurde das neue, inzwischen weltweit bearbeitete Gebiet der Optogenetik erschlossen. Im Rahmen der Jahreshauptversammlung der Max-Planck-Gesellschaft am 18. Juni 2009 in Mainz wird der Vorsitzende des Stifterverbandes für die Deutsche Wissenschaft, Dr. Arend Oetker, den mit 50 000 Euro dotierten Wissenschaftspreis an Bamberg überreichen.

Der Transport von Ladungen in Form von positiv und negativ geladenen Ionen über die Zellmembran spielt bei der Signalübertragung und Stoffaustausch in Zellen eine bedeutende Rolle. Ernst Bamberg hat sich seit Beginn seiner Forscherlaufbahn mit experimentellen und theoretischen Grundlagen zum Mechanismus des Ladungstransports über biologische Membranen beschäftigt, und dabei insbesondere Licht und durch Licht aktivierbare Moleküle eingesetzt. Schwerpunkt seiner Arbeiten war die Funktionsanalyse von mit den üblichen elektrophysiologischen Methoden schwer zugänglichen Transportern und Ionenpumpen.

So gelang es Bamberg erstmalig, durch Licht freisetzbare, energiehaltige Moleküle zum schnellen Anschalten von Membrantransportproteinen in vitro und in situ einzusetzen, und somit über die elektrophysiologische Bestimmung einzelner Teilreaktionen wichtige Informationen zum Mechanismus dieser Proteine zu erhalten. Mithilfe der sogenannten Voltage-Clamp-Fluorometry konnte er bei bestimmten, äußerst wichtigen Membrantransportreaktionen unter physiologischen Bedingungen in einzelnen Zellen den Ionentransport und die Konformationsdynamik miteinander korrelieren.

Darüber hinaus gelang ihm die elektrische und elektrophysiologische Charakterisierung der Licht-aktivierbaren mikrobiellen Rhodopsine, die Ähnlichkeiten mit den Sehpigmenten ("Rhodopsinen") des menschlichen Auges aufweisen. Die elektrophysiologische Beschreibung der beiden Ionenpumpen Bakteriorhodopsin und Halorhodopsin in eukaryotischen Zellen erlaubte, deren Tranporteigenschaften erstmalig direkt unter kontrollierten elektrischen Parametern zu bestimmen, wie sie in der natürlichen Umgebung vorkommen.

Mit dieser experimentellen Vorgehensweise wurde die Entdeckung der Licht-aktivierbaren Ionenkanäle Channelrhodopsin1und 2 in den Jahren 2002 und 2003 möglich. Bis zu diesem Zeitpunkt waren Licht-aktivierte Ionenkanäle unbekannt. Ernst Bamberg, sein ehemaliger Mitarbeiter Georg Nagel, der heute an der Universität Würzburg lehrt, und Peter Hegemann von der Humboldt-Universität, Berlin gelang es, diese einzigartigen Ionenkanäle aus der einzelligen Grünalge Chlamydomonas reinhardtii in Zellen von Wirbeltieren herzustellen und als die Zellen depolarisierende Kanäle zu beschreiben.

Bamberg, Hegemann und Nagel erkannten das technische Potenzial der Channelrhodopsine für die Neuro- und Zellbiologie und dokumentierten dies in einer Patentanmeldung im Jahre 2002 im Detail. In Nervenzellen sollten sich Channelrhodopsin2 und die Licht-getriebene Chloridpumpe Halorhodopsin als lang gesuchtes Werkzeug für die Neurobiologie und die Hirnforschung erweisen. Die Herstellung von Channelrhodopsin2 in elektrisch erregbaren Zellen in Kultur oder in lebenden Tieren führt zu einer Licht-induzierten Anregung der Zellen. Dabei wird der Ionenkanal geöffnet und die Zelle durch den Einstrom von Natrium-Ionen depolarisiert. Als Konsequenz dieses Vorgangs beginnt eine Nervenzelle zu "feuern", d.h. Aktionspotenziale auszusenden.

Die experimentelle Bestätigung an Neuronen und Muskelzellen gelang Bamberg und Nagel in Zusammenarbeit mit Alexander Gottschalk von der Goethe-Universität, Frankfurt und mit Karl Deisseroth von der Stanford University. Sowohl im transgenen Fadenwurm C. elegans als auch in kultivierten Hippocampus Zellen konnte eine präzise Lichtaktivierung bzw. Inaktivierung von Neuronen und Muskelzellen nachgewiesen werden. Mit diesen Arbeiten, von denen eine von der Fachzeitschrift Nature zu den Top Publikationen des Jahres 2007 gewählt wurde, gelang endgütig der Durchbruch für die Neurobiologie.

Neben der Bedeutung als Werkzeug in der neurobiologischen Grundlagenforschung, bergen die Licht-geschalteten Kanäle auch ein großes Potenzial für medizinische Anwendungen, beispielsweise für die Wiederherstellung des Sehens bei bestimmten Erblindungen sowie bei der Behandlung von Parkinson und Epilepsie (Ersatz der stimulierenden Elektroden durch Licht mit allen oben skizzierten Vorteilen). Dies wurde in der Folge durch einige Aufsehen erregende Arbeiten anderer Forschergruppen bestätigt, so durch Studien zur Wiederherstellung des Sehens an Photorezeptor-defizienten Mäusen oder Arbeiten zu Licht induzierten Verhaltensreaktionen von Nagern.

Der neue methodische Ansatz der Optogenetik beginnt, weite Teile der Neurobiologie zu revolutionieren, da in vielen Fällen die bisher üblichen stimulierenden Elektroden einfach durch eine nicht-invasive Belichtung ersetzt werden können. Auf Grund der sich jetzt abzeichnenden vielfältigen Möglichkeiten nicht nur in der Neurobiologie, sondern auch in der Zellbiologie bis hin zur Wirkstoffsuche, setzen inzwischen Hunderte von Labors weltweit Channelrhodopsine bei der Beantwortung ihrer Fragestellungen ein. "Die derzeitige Entwicklung lässt darauf schließen, dass Channelrhodopsine in der Zukunft eine ähnliche Bedeutung in der Neurobiologie erlangen werden, wie das ubiquitär eingesetzte Green Fluorescent Protein (GFP) heute in der Zellbiologie, für dessen Entdeckung und Anwendung 2008 der Nobelpreis für Chemie verliehen wurde", betont Bambergs Kollege Hartmut Michel.

Originalveröffentlichung:

Fendler, K., Grell, E., Haubs, M. und Bamberg, E.:
Pump currents generated by the purified Na+K+-ATPase from kidney on black lipid membranes.

EMBO J. 4, 3079-3085 (1985)

Bamberg, E., Tittor, J.und Oesterhelt, D.:
Light-driven proton or chloride pumping by halorhodopsin..
Proc. Natl. Acad. Sci. USA 90, 639-643 (1993)
Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P. und Bamberg, E.:
Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
Proc. Natl. Acad. Sci. 100, 13940-13945 (2003)
Geibel, S., Kaplan, J.H., Bamberg, E. und Friedrich, T.:
Conformational Dynamics of the Na+/K+-ATPase probed by voltage clamp fluorometry.

Proc. Natl. Acad. Sci. 100, 964-969 (2003).

Boyden, E.S., F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth:
Millisecond-timescale, genetically targeted optical control of neural activity.
Nature Neuroscience 8(9):1263-1268 (2005).
Zhang, F., Wang, L., Brauner, M., Liewald, J. F., Kay, K., Watzke, N., Wood, P. G., Bamberg, E., Nagel, G., Gottschalk, A. und Deisseroth, K.:
Multimodal fast optical interrogation of neural circuitry
Nature 446, 633-639 (2007)
Weitere Informationen erhalten Sie von:
Prof. Dr. Ernst Bamberg / Heidi Bergemann (Sekretariat)
Max-Planck-Institut für Biophysik, Frankfurt am Main
Tel.: +49 69 6303-200
E-Mail: secretary-bamberg@biophys.mpg.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht CAU-Wissenschaftlerin erhält EU-Förderung zur Entwicklung neuer Implantate
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Illegal geschlagenes Holz in Alltagsprodukten aufspüren
21.11.2017 | Deutsche Bundesstiftung Umwelt (DBU)

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften