Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3 Millionen Euro für die Entwicklung neuartiger Diodenlaser

15.08.2006
FBH-Forschungsprojekt "Hybride Diodenlaser-Systeme" soll Innovations- und Wirtschaftskraft der optischen Technologien in der Region Berlin-Brandenburg stärken. Erfolg für die Frauenförderpolitik des Instituts: Wissenschaftlerin leitet neue Arbeitsgruppe

Sie sind nicht nur klein, effizient und zuverlässig, sondern auch preiswerter und mobiler als bestehende Systeme. Mit diesen Eigenschaften und dem hohen wirtschaftlichen Verwertungspotenzial haben die hybriden Diodenlaser-Systeme des Ferdinand-Braun-Instituts für Höchstfrequenztechnik (FBH) die Expertenjury des BMBF-Förderprogramms "InnoProfile" überzeugt.

Drei Millionen Euro sollen in den nächsten fünf Jahren in das Projekt fließen. Projektleiterin Dr. Katrin Paschke und ihr 6-köpfiges Team können mit ihren Forschungen auf der langjährigen Kompetenz des FBH bei Hochleistungsdiodenlasern aufbauen. Das Forschungsvorhaben ist für das Leibniz-Institut einerseits eine Bestätigung für die gezielte Frauenförderpolitik und stärkt andererseits das Kompetenzfeld optische Technologien am Institut.

Spezifisches Know-how soll hier die Wirtschaftskraft der Region stärken und die Zukunftsfähigkeit Berlin-Brandenburgs durch neue Technologien und Arbeitsplätze sichern. Das FBH-Projekt wurde unter mehr als 120 Anträgen als eine von insgesamt 14 Initiativen ausgewählt. Drei weitere bewilligte Projekte stammen ebenfalls aus der Region.

Die kompakten Diodenlaser-Systeme sollen Licht im sichtbaren Spektralbereich (rot, grün und blau) mit mehreren Watt Ausgangsleistung liefern und unter anderem in der Displaytechnologie, Sensorik und der Medizintechnik eingesetzt werden. Sie zeichnen sich durch präzise Wellenlängen, direkte Modulierbarkeit, Leistungsstabilität, kleine Abmessungen, geringen Energieverbrauch, hohe Lebensdauer und Wartungsfreiheit bei relativ niedrigen Herstellungskosten aus.

Damit können sie künftig komplexe, teure und große Lasersysteme wie Gas- oder Festkörperlaser ersetzen. Mögliche Anwendungsfelder sind das Laserfernsehen, das Bilder in Kinoqualität für Zuhause liefern soll, sowie optische Spektroskopieverfahren zur Analyse von Spurengasen und zum Nachweis von Umweltverschmutzungen. In der Medizintechnik eignen sich die brillanten Lichtquellen unter anderem zur DNA-Analytik, Zythopathologie oder zellulären Mikroskopie. Durch die Kompaktheit und Mobilität der Diodenlaser können zusätzliche Anwendungsfelder erschlossen werden.

Gezielte Förderung: Wissenschaftlerin leitet Projektgruppe

Für das Ferdinand-Braun-Institut ist die Zusage auch eine Bestätigung seiner aktiven Frauenförderungspolitik. "Über den fachlich-wissenschaftlichem Aspekt hinaus, bemühen wir uns seit Jahren, mehr qualifizierte Frauen in Führungspositionen zu bringen", erklärt Prof. Günther Tränkle, Direktor des FBH, "und das ist alles andere als einfach, da der Anteil von Frauen mit naturwissenschaftlichem Studium nach wie vor erschreckend niedrig ist." Daher hat das Ferdinand-Braun-Institut in den letzten Jahren eine Reihe von Maßnahmen zur Erhöhung des Frauenanteils im wissenschaftlichen und technischen Bereich in die Wege geleitet. Beginnend mit der Mädchenfrühförderung während der Schulzeit (Schulpartnerschaften, Schülerlabor), über Diplomarbeiten und Promotionen unterstützt das FBH geeignete Frauen, bis hin zur systematischen Vorbereitung auf Leitungspositionen. "Frau Paschke ist eine hoch qualifizierte Wissenschaftlerin, die wir frühzeitig gefördert und auf Führungsaufgaben vorbereitet haben", sagt Tränkle. Dr. Katrin Paschke ist seit 1997 am Institut beschäftigt, hat zum Thema "Hochleistungsdiodenlaser mit hoher spektraler Strahldichte" promoviert.

Als Wissenschaftlerin und Mutter von zwei Kindern profitiert sie von den familienfreundlichen Maßnahmen des Instituts. Ein institutseigenes Kinderzimmer hilft bei der Überbrückung von Betreuungslücken, flexible Arbeitszeiten und individuelle, an familiäre Erfordernisse angepasste Arbeitsvereinbarungen erleichtern die Vereinbarkeit von Karriere und Privatleben.

Wissenschaftliche Herausforderung

Explizites Entwicklungsziel sind kompakte, hochbrillante Diodenlaser-Systeme für den sichtbaren Spektralbereich, die zuverlässig Laserlicht mit einer Ausgangsleistung von 3 bis 5 W emittieren. "Das entspricht im grünen und blauen Spektralbereich einer Leistungssteigerung von Lasern bzw. Diodenlaser-Systemen von mehreren Größenordnungen", erläutert Katrin Paschke. "Im roten Spektralbereich entspräche dies einer Verbesserung um den Faktor 3 bis 4." Daraus ergeben sich hohe Wertschöpfungspotenziale, insbesondere für neue Märkte wie Umwelttechnik oder Biotechnologie. Die besondere Herausforderung des Projektes besteht in der Miniaturisierung des Lasermoduls. Dazu werden alle Chipkomponenten sowie Linsen für die Strahlformung und der nichtlineare optische Kristall für die Frequenzverdopplung auf einer mikrooptischen Bank integriert.

Rote Lasersysteme lassen sich direkt auf der Basis von Aluminiumgalliumphosphid realisieren. Dagegen reichen Leistungen, Strahlqualität und Lebensdauer von blauen und grünen Laserdioden für viele Anwendungen nicht aus. Für diesen Spektralbereich sind Lasersysteme nötig, die auf der nichtlinearen Frequenzverdopplung von infraroten Diodenlasern im Wellenlängenbereich von 900 bis 1100 Nanometern (nm) durch nichtlineare optische Kristalle beruhen.

Voraussetzung sind brillante Diodenlaser, die sowohl mit guter Strahlqualität als auch spektral schmalbandig emittieren. Der Konversionswirkungsgrad von infrarot zu sichtbar soll 30 Prozent erreichen. Das erfordert eine Entwicklung von Diodenlasern bzw. Diodenlaser-basierten Systemen, die im Wellenlängenbereich zwischen 920 - 1100 nm Ausgangsleistungen von deutlich mehr als 10 W mit guter Strahlqualität und spektral schmalbandig erreichen. Daher werden mit dem Erfolg des Forschungsprojektes Diodenlaser-Systeme mit exzellenten Eigenschaften nicht nur im Sichtbaren verfügbar sein, sondern zusätzlich im nahen infraroten Spektralbereich.

Weitere Informationen

Petra Immerz, M.A.
Referentin Kommunikation & Marketing
Ferdinand-Braun-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de
Hintergrundinformationen - das FBH
Das Ferdinand-Braun-Institut für Höchstfrequenztechnik ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Optoelektronik. Auf der Basis von III/V-Verbindungshalbleitern realisiert es Hochfrequenz-Bauelemente und Schaltungen für Anwendungen in der Kommunikationstechnik und Sensorik. Leistungsstarke und hochbrillante Diodenlaser entwickelt das Institut für die Materialbearbeitung, Lasertechnologie, Medizintechnik und Präzisionsmesstechnik. Die enge Zusammenarbeit des FBH mit Industriepartnern und Forschungseinrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt 160 Mitarbeiter und hat einen Etat von 14 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. (FVB) und ist Mitglied der Leibniz-Gemeinschaft.

Petra Immerz, M.A. | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Berichte zu: Diodenlaser FBH Lasersystem Medizintechnik

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics