Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3 Millionen Euro für die Entwicklung neuartiger Diodenlaser

15.08.2006
FBH-Forschungsprojekt "Hybride Diodenlaser-Systeme" soll Innovations- und Wirtschaftskraft der optischen Technologien in der Region Berlin-Brandenburg stärken. Erfolg für die Frauenförderpolitik des Instituts: Wissenschaftlerin leitet neue Arbeitsgruppe

Sie sind nicht nur klein, effizient und zuverlässig, sondern auch preiswerter und mobiler als bestehende Systeme. Mit diesen Eigenschaften und dem hohen wirtschaftlichen Verwertungspotenzial haben die hybriden Diodenlaser-Systeme des Ferdinand-Braun-Instituts für Höchstfrequenztechnik (FBH) die Expertenjury des BMBF-Förderprogramms "InnoProfile" überzeugt.

Drei Millionen Euro sollen in den nächsten fünf Jahren in das Projekt fließen. Projektleiterin Dr. Katrin Paschke und ihr 6-köpfiges Team können mit ihren Forschungen auf der langjährigen Kompetenz des FBH bei Hochleistungsdiodenlasern aufbauen. Das Forschungsvorhaben ist für das Leibniz-Institut einerseits eine Bestätigung für die gezielte Frauenförderpolitik und stärkt andererseits das Kompetenzfeld optische Technologien am Institut.

Spezifisches Know-how soll hier die Wirtschaftskraft der Region stärken und die Zukunftsfähigkeit Berlin-Brandenburgs durch neue Technologien und Arbeitsplätze sichern. Das FBH-Projekt wurde unter mehr als 120 Anträgen als eine von insgesamt 14 Initiativen ausgewählt. Drei weitere bewilligte Projekte stammen ebenfalls aus der Region.

Die kompakten Diodenlaser-Systeme sollen Licht im sichtbaren Spektralbereich (rot, grün und blau) mit mehreren Watt Ausgangsleistung liefern und unter anderem in der Displaytechnologie, Sensorik und der Medizintechnik eingesetzt werden. Sie zeichnen sich durch präzise Wellenlängen, direkte Modulierbarkeit, Leistungsstabilität, kleine Abmessungen, geringen Energieverbrauch, hohe Lebensdauer und Wartungsfreiheit bei relativ niedrigen Herstellungskosten aus.

Damit können sie künftig komplexe, teure und große Lasersysteme wie Gas- oder Festkörperlaser ersetzen. Mögliche Anwendungsfelder sind das Laserfernsehen, das Bilder in Kinoqualität für Zuhause liefern soll, sowie optische Spektroskopieverfahren zur Analyse von Spurengasen und zum Nachweis von Umweltverschmutzungen. In der Medizintechnik eignen sich die brillanten Lichtquellen unter anderem zur DNA-Analytik, Zythopathologie oder zellulären Mikroskopie. Durch die Kompaktheit und Mobilität der Diodenlaser können zusätzliche Anwendungsfelder erschlossen werden.

Gezielte Förderung: Wissenschaftlerin leitet Projektgruppe

Für das Ferdinand-Braun-Institut ist die Zusage auch eine Bestätigung seiner aktiven Frauenförderungspolitik. "Über den fachlich-wissenschaftlichem Aspekt hinaus, bemühen wir uns seit Jahren, mehr qualifizierte Frauen in Führungspositionen zu bringen", erklärt Prof. Günther Tränkle, Direktor des FBH, "und das ist alles andere als einfach, da der Anteil von Frauen mit naturwissenschaftlichem Studium nach wie vor erschreckend niedrig ist." Daher hat das Ferdinand-Braun-Institut in den letzten Jahren eine Reihe von Maßnahmen zur Erhöhung des Frauenanteils im wissenschaftlichen und technischen Bereich in die Wege geleitet. Beginnend mit der Mädchenfrühförderung während der Schulzeit (Schulpartnerschaften, Schülerlabor), über Diplomarbeiten und Promotionen unterstützt das FBH geeignete Frauen, bis hin zur systematischen Vorbereitung auf Leitungspositionen. "Frau Paschke ist eine hoch qualifizierte Wissenschaftlerin, die wir frühzeitig gefördert und auf Führungsaufgaben vorbereitet haben", sagt Tränkle. Dr. Katrin Paschke ist seit 1997 am Institut beschäftigt, hat zum Thema "Hochleistungsdiodenlaser mit hoher spektraler Strahldichte" promoviert.

Als Wissenschaftlerin und Mutter von zwei Kindern profitiert sie von den familienfreundlichen Maßnahmen des Instituts. Ein institutseigenes Kinderzimmer hilft bei der Überbrückung von Betreuungslücken, flexible Arbeitszeiten und individuelle, an familiäre Erfordernisse angepasste Arbeitsvereinbarungen erleichtern die Vereinbarkeit von Karriere und Privatleben.

Wissenschaftliche Herausforderung

Explizites Entwicklungsziel sind kompakte, hochbrillante Diodenlaser-Systeme für den sichtbaren Spektralbereich, die zuverlässig Laserlicht mit einer Ausgangsleistung von 3 bis 5 W emittieren. "Das entspricht im grünen und blauen Spektralbereich einer Leistungssteigerung von Lasern bzw. Diodenlaser-Systemen von mehreren Größenordnungen", erläutert Katrin Paschke. "Im roten Spektralbereich entspräche dies einer Verbesserung um den Faktor 3 bis 4." Daraus ergeben sich hohe Wertschöpfungspotenziale, insbesondere für neue Märkte wie Umwelttechnik oder Biotechnologie. Die besondere Herausforderung des Projektes besteht in der Miniaturisierung des Lasermoduls. Dazu werden alle Chipkomponenten sowie Linsen für die Strahlformung und der nichtlineare optische Kristall für die Frequenzverdopplung auf einer mikrooptischen Bank integriert.

Rote Lasersysteme lassen sich direkt auf der Basis von Aluminiumgalliumphosphid realisieren. Dagegen reichen Leistungen, Strahlqualität und Lebensdauer von blauen und grünen Laserdioden für viele Anwendungen nicht aus. Für diesen Spektralbereich sind Lasersysteme nötig, die auf der nichtlinearen Frequenzverdopplung von infraroten Diodenlasern im Wellenlängenbereich von 900 bis 1100 Nanometern (nm) durch nichtlineare optische Kristalle beruhen.

Voraussetzung sind brillante Diodenlaser, die sowohl mit guter Strahlqualität als auch spektral schmalbandig emittieren. Der Konversionswirkungsgrad von infrarot zu sichtbar soll 30 Prozent erreichen. Das erfordert eine Entwicklung von Diodenlasern bzw. Diodenlaser-basierten Systemen, die im Wellenlängenbereich zwischen 920 - 1100 nm Ausgangsleistungen von deutlich mehr als 10 W mit guter Strahlqualität und spektral schmalbandig erreichen. Daher werden mit dem Erfolg des Forschungsprojektes Diodenlaser-Systeme mit exzellenten Eigenschaften nicht nur im Sichtbaren verfügbar sein, sondern zusätzlich im nahen infraroten Spektralbereich.

Weitere Informationen

Petra Immerz, M.A.
Referentin Kommunikation & Marketing
Ferdinand-Braun-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de
Hintergrundinformationen - das FBH
Das Ferdinand-Braun-Institut für Höchstfrequenztechnik ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Optoelektronik. Auf der Basis von III/V-Verbindungshalbleitern realisiert es Hochfrequenz-Bauelemente und Schaltungen für Anwendungen in der Kommunikationstechnik und Sensorik. Leistungsstarke und hochbrillante Diodenlaser entwickelt das Institut für die Materialbearbeitung, Lasertechnologie, Medizintechnik und Präzisionsmesstechnik. Die enge Zusammenarbeit des FBH mit Industriepartnern und Forschungseinrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt 160 Mitarbeiter und hat einen Etat von 14 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. (FVB) und ist Mitglied der Leibniz-Gemeinschaft.

Petra Immerz, M.A. | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Berichte zu: Diodenlaser FBH Lasersystem Medizintechnik

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Illegal geschlagenes Holz in Alltagsprodukten aufspüren
21.11.2017 | Deutsche Bundesstiftung Umwelt (DBU)

nachricht DFG-Förderung für weltweit größte Studie zu Einzel-Implantaten im zahnlosen Unterkiefer
21.11.2017 | Deutsche Gesellschaft für Zahn-, Mund- und Kieferheilkunde e.V.

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie