Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

10 Millionen für die RNA-Forschung

26.01.2006


Ein internationales Wissenschaftler-Konsortium unter der Leitung von Prof. Reinhard Lührmann am Max-Planck-Institut für biophysikalische Chemie hat von der EU den Zuschlag für den Aufbau eines "Exzellenznetzes" bekommen. Dreißig Arbeitsgruppen aus 13 Ländern werden ihre Forschungsaktivitäten bei der Aufklärung des so genannten "alternativen Spleißens" von RNA bündeln.

... mehr zu:
»Exon »Protein »Spleißosom »Spleißprozess

In den Zellen von Tieren und Pflanzen ("Eukaryonten") ist die genetische Botschaft zur Herstellung von Proteinen auf mehrere DNA-Abschnitte, sog. "Exons", verteilt, die von nicht-kodierenden DNA-Strecken, den "Introns", unterbrochen werden. Beim Umschreiben der DNA in messenger-RNA müssen die Introns herausgeschnitten und die Exons zusammengefügt werden - ein Vorgang, den man als mRNA-Spleißen bezeichnet. Erst die gespleißte mRNA kann als Matritze für die Herstellung eines Proteins dienen.

Die mRNA-Spleißprozesse werden im Zellkern von hochkomplizierten molekularen Maschinen bewerkstelligt, die Spleißosomen genannt werden. Die enorme Bedeutung des mRNA-Spleißens wird nicht zuletzt durch die Erkenntnisse aus den letzen Jahren unterstrichen, dass die Zahl der proteinkodierenden Gene im menschlichen Genom viel kleiner ist (nur ca. 25 000), als man angesichts der Komplexität des menschlichen Proteoms erwartet hatte. Diese "fehlende" Komplexität auf der DNA-Ebene wird im Wesentlichen durch alternatives mRNA-Spleißen ausgeglichen, wobei durch reguliertes Verknüpfen verschiedener Exons aus der gleichen pre-mRNA eine Vielzahl unterschiedlicher mRNAs (und damit unterschiedlicher Proteine) hergestellt werden kann.


Alternatives Spleißen ist eine essentielle Ebene der Genregulation und betrifft jeden Aspekt der Biologie von Eukaryonten. Dabei auftretende Defekte sind häufig die Ursache oder Verstärker einer immer größer werdenden Zahl von Krankheiten, einschließlich Krebs und neurodegenerativer Krankheiten. Während man die Grundzüge des Aufbaus und der Arbeitsweise der Spleißosomen bereits kennt, wird die Regulation alternativer Spleißprozesse bisher nur bruchstückhaft verstanden. Dieses liegt u. a. daran, dass die Selektion bestimmter Exons für diese Spleißprozesse durch ein Zusammenspiel vieler Proteine bestimmt wird (die sog. kombinatorische Kontrolle). Darüber hinaus werden alternative Spleißprozesse auch durch die Kommunikation der Spleißosomen mit der Transkriptionsmaschinerie beeinflusst.

Unter der Leitung von Prof. Reinhard Lührmann (Abteilung Zelluläre Biochemie) am Max-Planck-Institut für biophysikalische Chemie hat sich ein internationales Konsortium zusammen gefunden und bei der EU Forschungsgelder für ein so genanntes Exzellenznetz (Network of Excellence) eingeworben. Dieses Exzellenznetz mit der Bezeichnung EURASNET (European Alternative Splicing Network) hat sich vier wichtige Ziele gesteckt:

o Durchführung eines gemeinsamen Forschungsprogramms zur Aufklärung der Mechanismen des alternativen Spleißens sowie der Interaktion von Spleißosomen mit anderen Steuerungsprozessen der Genexpression mit biochemischen, molekulargenetischen und systembiologischen Methoden. Die Untersuchungen sollen auch klinische Aspekte mit einbeziehen.

o Schaffung einer Kommunikationsplattform zum Austausch von Informationen, Methoden und Material zwischen den Netzwerkpartnern.

o Unterstützung von zehn Nachwuchswissenschaftlern (Young Investigators) beim Aufbau neuer Forschergruppen, als "Speerspitze" einer Initiative zur Förderung europäischer Forschungskarrieren.

o Verbreitung der Erkenntnisse auf Konferenzen, Workshops und Vorträgen sowie Aufbau von intensiven Kontakten zu anderen RNA-Netzwerken, Kliniken und forschungsorientierten Industrieunternehmen.

Starttermin des EURASNET-Projekts ist der 1. Januar 2006. In dem Konsortium sind 30 Arbeitsgruppen aus 11 europäischen Ländern sowie Israel und Argentinien vertreten. Auf deutscher Seite sind zwei Max-Planck-Institute in Göttingen und Dresden, die Universitäten Erlangen und Gießen sowie das EMBL, eine internationale Organisation mit Sitz in Heidelberg, beteiligt. Die Förderung der Europäischen Union beträgt 10 Millionen Euro und verteilt sich auf eine Laufzeit von fünf Jahren.

Weitere Informationen von:
Dr. Joachim Bormann, Max-Planck-Institut für biophysikalische Chemie, EU-Referat, Am Fassberg 11, 37077 Göttingen, Tel: 0551 201- 1076, Fax: -1175, eMail: j.bormann@gwdg.de

Dr. Christoph Nothdurft | idw
Weitere Informationen:
http://www.mpibpc.mpg.de/PR/2006/06_03/

Weitere Berichte zu: Exon Protein Spleißosom Spleißprozess

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie