Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zukunft der Speichertechnik - Neue Methode zur Erzeugung magnetischer Wirbel

04.10.2017

Magnetische Wirbel, sogenannte Skyrmionen, gelten als Hoffnungsträger einer effizienteren Speichertechnik und werden intensiv erforscht. Wissenschaftler haben jetzt eine Methode zum Erzeugen von Skyrmionen gefunden, die sich direkt im Speicherchip integrieren lässt und bis in den Gigahertz-Bereich zuverlässig funktioniert. Beteiligt waren das Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), das Massachusetts Institute of Technology (MIT) sowie weitere deutsche Forschungseinrichtungen. Die Forschungsergebnisse sind in „Nature Nanotechnology“ erschienen.

Die Wissenschaftler haben Skyrmionen erzeugt, indem sie Sandwich-Strukturen aus Platin, einer magnetischen Legierung bestehend aus Kobalt, Eisen und Bor sowie Magnesiumoxid eingesetzt haben. Dr. Felix Büttner vom MIT erklärt:


Schematische Darstellung eines Racetrack-Drahtes. Dieser besteht aus einem Stapel von 45 Schichten, die jeweils nur etwa einen Nanometer dünn sind. Im Schema sind nur drei der 45 Schichten dargestellt. Skyrmionen (blau dargestellt) entstehen in diesem speziellen Materialsystem hinter dem durch die Schlitze geschaffenen Engpass, wenn starke Strompulse durch den Draht geschickt werden. Die Skyrmionen können dann mit weiteren schwachen Strompulsen zur Speicherung entlang des Drahtes verschoben werden. Die An- oder Abwesenheit eines Skyrmions codiert dann ein Bit „1“ oder „0“. Im Hintergrund ist ein Ausschnitt aus einem Röntgenhologramm zu sehen, wie es die Forscher aufgezeichnet haben um die Skyrmionen abzubilden. (Grafik: Moritz Eisebitt)

„Aufgrund des Spin-Hall-Effektes, einem quantenmechanischen Effekt, und einer speziellen Wechselwirkung der Atome an den Grenzflächen der Materialien lassen sich Skyrmionen durch Strompulse gezielt herstellen. Mit unserer Methode ist das direkt in sogenannten Racetrack-Strukturen möglich, und zwar an vorher festgelegten Stellen, was ja für ein kontrolliertes Schreiben von Daten wesentlich ist.“

Die Racetrack-Strukturen sind nanometerdünne Drähte aus übereinandergestapelten magnetischen Materialien. Den genauen Erzeugungsort der Magnetwirbel konnten die Forscher durch eine kleine zusätzliche Verengung im Draht festlegen.

Dass tatsächlich die speziellen Skyrmion-Magnetwirbel erzeugt und mit einem weiteren Strompuls in den Racetrack-Draht geschoben worden sind, haben die Wissenschaftler am Deutschen Elektronensynchrotron DESY in Hamburg mit Röntgenstrahlung nachgewiesen. „Röntgenholografie erlaubt höchst empfindlich den Nachweis dieser sehr kleinen magnetischen Strukturen. Die Magnetisierungswirbel lassen sich so mit einer Auflösung von etwa 20 Nanometern abbilden“, erklärt Dr. Bastian Pfau, einer der Wissenschaftler des MBI-Teams.

Die Wissenschaftler haben in ihren Untersuchungen verfolgen können, wie mit einzelnen Strompulsen Skyrmionen erzeugt werden, die dann mit weiteren Pulsen bewegt werden. Wichtig war dabei das Verständnis der grundlegenden Prozesse:

Was spielt sich in den wenige Nanometer dünnen Schichten des Materials und an den Grenzflächen ab, wenn einzelne kurze Strompulse mit einer Dauer im Bereich von Nanosekunden durch das Material geschickt werden? Wie beeinflussen Elektronen von der Platinschicht aus während der Strompulse die Magnetisierung in der angrenzenden Kobaltlegierung, so dass Skyrmionen mit bestimmtem Drehsinn entstehen? Hierfür hat das Team seine Beobachtungen mit mikromagnetischen Simulationen verglichen, in denen die Prozesse im Computer nachgebildet werden.

„Diese Erkenntnisse zum mikroskopischen Mechanismus werden uns entscheidend helfen, die Konzepte und Materialien für zukünftige Datenspeichertechnologien weiterzuentwickeln“, freut sich Büttner.

Daten speichern in drei Dimensionen

„Unsere Daten sind in der Cloud“ – wer das sagt, vergisst manchmal, dass die Daten letztendlich auf Festplatten abgespeichert sind, in großen Datencentern von Firmen wie Google und Facebook. Die einzelnen Daten-Bits sind in der Magnetisierung dünner magnetischer Filme gespeichert. Die Bits werden mit einem sich mechanisch bewegenden Schreib-/Lesekopf mit Magnetfeldpulsen auf eine schnell rotierende Scheibe geschrieben, die eigentliche Festplatte.

Um zukünftig mehr Daten auf gleichem Raum speichern zu können, arbeiten Wissenschaftler daran, von diesem inhärent zweidimensionalen Speicherverfahren zu einem dreidimensionalen Verfahren überzugehen. In solchen sogenannten Racetrack-Speichern sollen die Bits auch als Magnetisierungsmuster gespeichert werden, nun aber in einer drahtartigen Struktur. Dort können sie zum Lesen und Schreiben wie auf einer Rennbahn – daher der Name – sehr schnell hin und her geschoben werden.

Im Gegensatz zu heutigen Festplatten soll das Schreiben und Verschieben der Bits ausschließlich mit Hilfe sehr kurzer Strompulse geschehen und damit auf den Einsatz beweglicher Teile ganz verzichtet werden. Da sich die Racetrack-Drähte wie viele parallele Strohhalme in drei Dimensionen dicht packen lassen, wären so deutlich höhere Speicherdichten möglich.

Ein Kandidat für die Darstellung einzelner Bits sind dabei die nanometerkleinen Wirbel in der Magnetisierung des magnetischen Materials, die Skyrmionen. Sie faszinieren die Forscher, da sie sich mittels Strom verschieben lassen und dabei sehr stabil sind. Das Vorhandensein bzw. die Abwesenheit eines Skyrmions würde dann zukünftig die Bits „0“ und „1“ repräsentieren. Um einzelne Skyrmionen kontrolliert zu erzeugen, waren bisher jedoch sehr aufwändige Apparaturen nötig – die aktuellen Forschungsergebnisse zeigen hier einen neuen Weg auf.

Bildunterschrift:
Schematische Darstellung eines Racetrack-Drahtes. Dieser besteht aus einem Stapel von 45 Schichten, die jeweils nur etwa einen Nanometer dünn sind. Im Schema sind nur drei der 45 Schichten dargestellt. Skyrmionen (blau dargestellt) entstehen in diesem speziellen Materialsystem hinter dem durch die Schlitze geschaffenen Engpass, wenn starke Strompulse durch den Draht geschickt werden. Die Skyrmionen können dann mit weiteren schwachen Strompulsen zur Speicherung entlang des Drahtes verschoben werden. Die An- oder Abwesenheit eines Skyrmions codiert dann ein Bit „1“ oder „0“. Im Hintergrund ist ein Ausschnitt aus einem Röntgenhologramm zu sehen, wie es die Forscher aufgezeichnet haben um die Skyrmionen abzubilden. (Grafik: Moritz Eisebitt)

Originalpublikation:
Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques
Felix Büttner, Ivan Lemesh, Michael Schneider, Bastian Pfau, Christian M. Günther, Piet Hessing, Jan Geilhufe, Lucas Caretta, Dieter Engel, Benjamin Krüger, Jens Viefhaus, Stefan Eisebitt and Geoffrey S. D. Beach. Nature Nanotechnology. DOI 10.1038/nnano.2017.178

Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Prof. Dr. Stefan Eisebitt
E-Mail eisebitt@mbi-berlin.de
Tel. +49 (0)30 / 6392-1300

Dr. Bastian Pfau
E-Mail bastian.pfau@mbi-berlin.de
Tel. +49 (0)30 / 6392-1343
http://mbi-berlin.de/

Weitere Informationen:

http://dx.doi.org/10.1038/nnano.2017.178

Dipl.-Geogr. Anja Wirsing | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Hochpolige Push-in-Kontakteinsätze für schwere Steckverbinder
22.05.2018 | PHOENIX CONTACT GmbH & Co.KG

nachricht Crimpzange mit drehbarem Gesenk
18.05.2018 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics