Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weiße Rekord-OLEDs der Uni Dresden und Novaled's übertreffen Leuchstoffröhren Effizienz

14.05.2009
Die Technische Universität Dresden und Novaled AG erreichen für ein anwendungsrelevantes Bauteil 90 lm/W bei einer Helligkeit von 1000 cd/m2,mit 3D Lichtauskopplungssystem 124 lm/W.

Weiße organische Leuchtdioden (OLEDs) sind eine vielversprechende neue Technologie, um die Beleuchtungsquelle der Zukunft zu werden. Sie haben das Potenzial, deutlich höhere Effizienzen als klassische Lichtquellen zu erreichen. Wegen ihrer einzigartigen attraktiven Eigenschaften werden Weißlicht OLEDs neue Akzente in der Beleuchtungsindustrie setzen.

Als ultradünne, großflächig emittierende Bauteile können sie zukünftig in jeder Größe und Form hergestellt werden, flexibel oder durchsichtig sowie im Farbton abstimmbar sein. Damit eröffnen sich völlig neue Möglichkeiten für Lichtdesigner, die nun auch in Fragen Leistungseffizienz auf OLEDs setzen können. Mit Effizienzen von 50-70 lm/W (bei Einsatz von Lampenschirmen und Reflektoren) waren bisher Leuchtstoffröhren Maßstab für neue Technologien. Diese wurden nun mit den Ergebnissen der Technischen Universität Dresden und Novaled's deutlich übertroffen.

"In unserem Ansatz vereinen wir ein neues, sehr energieeffizientes Design der emittierenden Schichten mit Konzepten zur Erhöhung der Lichtauskopplung", so Projektleiter Dipl.-Phys. Sebastian Reineke, Institut für Angewandte Photophysik (IAPP, TU Dresden). "Die Leistungseffizienzen dieser Rekordbauteile erreichen 90 lm/W auch mit flachen, skalierbaren Auskopplungsansätzen. Durch spezielle 3D Auskopplungssysteme können mit dieser Struktur sogar 124 lm/W bei gleichen CIE Koordinaten erreicht werden." Für die Bestimmung beider Werte in einer Ulbrichtkugel wurden die Substratseiten verdeckt und nur das in den vorderen Halbraum abgestrahlte Licht bewertet. Die CIE Farbkoordinaten sind (0,41/0,49). Über weitere Details wird in der heutigen Ausgabe der führenden wissenschaftlichen Zeitschrift 'nature' berichtet.

"Das große Potenzial dieser Bauteile zeigt sich, wenn man beachtet, dass sogar bei sehr hohen Helligkeiten von 5000 cd/m2 eine Effizienz von 74 lm/W erreicht wird", sagt Prof. Karl Leo, Direktor des IAPP. "Das beweist, dass auch Beleuchtung bei hohen Helligkeiten mit sehr hohen Effizienzen möglich ist".

"Diese bemerkenswerten Resultate aus F&E sind Ausgangspunkt weiterer Entwicklungen, z.B. für eine kommerziell ausreichende Lebensdauer. Auf jeden Fall sind sie ein Durchbruch für die Etablierung von OLEDs als zukünftige Lichtquelle", sagt Gildas Sorin, CEO von Novaled. "Besonders für hohe Effizienzen bei hohen Helligkeiten ist unsere Dotiertechnologie unverzichtbar. Weiße OLEDs werden bald dazu beitragen, unsere CO2-Bilanz zu reduzieren. Dabei wird die Novaled PIN OLED® Technologie eine bedeutende Rolle spielen." fügt Sorin hinzu.

über OLEDs
OLEDs (Organic Light Emitting Diodes) sind wenige Nanometer dünne organische Halbleiter mit der Eigenschaft, Licht flächig abzustrahlen. In einem extrem schnell wachsenden Markt spielen OLEDs die Schlüsselrolle für eine revolutionäre Entwicklung: den Traum von hauchdünnen, flexiblen, hocheffizienten Displays mit brillanten Farben und hohem Kontrast Realität werden zu lassen. Organische Leuchtdioden finden gegenwärtig als Display Einsatz in MP3, PDAs, Kameras und Handys. OLEDs machen zukünftig ultradünne, aufrollbare Flachbildschirme möglich. Hinzu kommt ein gewaltiges Marktpotential im Bereich Beleuchtungen mit visionären Anwendungen wie beispielsweise 'leuchtender Tapete'. OLEDs haben das Potential, noch effizienter als Energiesparlampen zu sein.
über IAPP
Das Institut für Angewandte Photophysik der Technischen Universität Dresden ist ein führendes Forschungsinstitut auf dem Gebiet der Grundlagen- und angewandten Forschung zu organischen Halbleitern. In letzter Zeit hat das Institut eine Reihe wichtiger Innovationen erzielt. Weiterhin wurden eine Reihe von Firmen ausgegründet, dazu gehören Novaled AG, Heliatek GmbH, Creaphys GmbH, und sim4tec GmbH.
Kontakt: Dipl.-Phys. Sebastian Reineke
T: +49 (0) 351 463 42415
sebastian.reineke@iapp.de
über Novaled AG
Novaled AG ist weltweit führend im Bereich von OLED-Technologien und spezialisiert auf hocheffiziente OLED-Strukturen mit langer Lebensdauer. Das Unternehmen verfügt über ein Höchstmaß an Kompetenz auf dem Gebiet der synthetischen und analytischen Chemie. Mithilfe seiner Novaled PIN OLEDÒ Technologie und seiner OLED-Materialien hält das Unternehmen Komplettlösungen für den Markt der organischen Elektronik bereit. Novaled ist langfristiger Partner führender internationaler OLED Anbieter. Mit mehr als 400 bewilligten und angemeldeten Patenten verfügt Novaled über eine starke IP Position. Novaled wurde 2008 als Nr. 1 der am schnellsten wachsenden deutschen Mittelständler durch die Wirtschaftspublikationen Handelsblatt und Wirtschaftswoche ermittelt. Hauptinvestoren sind eCAPITAL, Crédit Agricole Private Equity, TechnoStart, TechFund und CDC Innovation. Weitere Informationen sind zu finden unter www.novaled.com oder auf den kürzlich veröffentlichten asiatischsprachigen Internetseiten www.novaled.com/jp und www.novaled.com/kr.

Kontakt: Anke Lemke, Marketing Communications, T: +49 (0) 351 796 5819, anke.lemke@novaled.com

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.novaled.com/kr
http://www.iapp.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie