Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Dresden entwickelt weltweit ersten Chemischen Mikroprozessor

18.06.2012
Prof. Andreas Richter vom Institut für Halbleiter- und Mikrosystemtechnik und seinem Team ist es gelungen, einen Mikroprozessor zu entwickeln, der im Unterschied zu den Mikroprozessoren der Computer keine elektronische Information, sondern chemische Information in Form von Chemikalienkonzentrationen verarbeitet.

Das Schaltkreis-Konzept ähnelt verblüffend dem der mikroelektronischen Prozessoren. Wie diese bestehen die chemischen Schaltkreise aus übereinander gestapelten dünnen Schichten aktiver Materialen.


Mikroprozessor
Rinaldo Greiner

Allerdings kommen nicht dotierte aktive elektronische Halbleitermaterialien wie Silicium zum Einsatz, sondern besondere Polymere, die aber ebenfalls die Basis für transistorähnliche Bauelemente bilden, die zu tausenden in den Chip integriert sind. Diese „chemischen Transistoren“ regeln keinen elektrischen Strom, sondern in winzigen Mikrokanälen Materieflüsse.

Die chemischen Mikrochips sind die ersten echten Lab-on-a-Chip-Mikroprozessoren, also eine Art Labor auf dem Mikrochip. Sie benötigen im Gegensatz zu den bisherigen Lab-on-a-Chips keinerlei externe Steuerung, da sie vollautomatisch arbeiten und ausschließlich mit chemischer Energie betrieben werden. Dabei können sie schon heute Aufgaben bewältigen, bei denen die meisten bestehenden Lab-on-a-Chip-Technologien trotz ihrer aufwändigen Computersteuerungen passen müssen.

Die Wissenschaftler um Andreas Richter hoffen, dass ihr Konzept perspektivisch eine Entwicklung anstößt, die vergleichbar mit jener der elektronischen Mikroprozessoren ist, deren Einführung Anfang der siebziger Jahre den Siegeszug der Mikroelektronik einleitete.

Die Zukunft ihrer chemischen Mikroprozessoren sehen die Wissenschaftler im Bereich der Medizin, Umwelt, Prozesstechnik und anderen Wissenschaftsbereichen. Dort basieren viele, vielleicht die meisten Prozesse auf der Verarbeitung von Materialien. Kann man diese Prozesse mit einem „chemischen Computer“ durchführen oder berechnen, ergeben sich noch gar nicht absehbare Möglichkeiten.

Als eine der ersten Anwendungen arbeiten die Wissenschaftler an Systemen, die die Analytik und medizinische Diagnostik unterstützen sollen. Man kann sich diese ähnlich einem Smartphone vorstellen, welches anhand eines Tröpfchens Körperflüssigkeit sofort feststellen kann, wie es dem betroffenen Menschen gesundheitlich geht, welche akuten Krankheiten er hat und was die nächsten notwendigen Maßnahmen sind.

Das Team von Prof. Andreas Richter arbeitet mit in dem als Exzellenzcluster bewilligten „Center for Advancing Electronics Dresden“ (cfAED). Ziel des cfAED ist die Erschließung neuer Wege für die Mikroelektronik der Zukunft.

Der chemische Mikroprozessor wurde auf der 4. International Conference „Smart Materials, Structures and Systems“ in Montecatini Terme, Italien, präsentiert und wird demnächst auch ausführlich in einem Artikel in der Zeitschrift Lab on a Chip beschrieben.

Informationen für Journalisten:
Prof. Dr.-Ing. Andreas Richter
Institut für Halbleiter- und Mikrosystemtechnik
Tel. +49 (0)351 463-32025, -36336
Fax +49 (0)351 463-37280
andreas.richter7@tu-dresden.de

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wie Protonen durch eine Brennstoffzelle wandern
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Omicron Diodenlaser mit höherer Ausgangsleistung und erweiterter Garantie
20.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie