Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Thermoelektrischer Generator gewinnt Energie aus der Umgebung

05.02.2018

Vernetzung ist für die Digitalisierung in einer Fabrik unabkömmlich. Intelligente Anlagen sollen in der Lage sein, Messdaten selbständig zu erfassen, zu verarbeiten und weiterzugeben. Dazu werden Sensoren benötigt. Um diese mit Strom zu versorgen, entwickeln Wissenschaftler des IPH und PCI flexible thermoelektrische Generatoren, die Energie aus der Umgebung gewinnen können.

Ein automatisierter Produktionsprozess bedarf vieler Sensoren. Diese müssen mit Strom versorgt werden, damit sie Messdaten aufnehmen, verarbeiten und senden können. Bisher geschieht dies häufig per Kabel oder Batterie. Das ist jedoch nicht nur aufwendig, sondern auch teuer, da Kabel verlegt und Batterien regelmäßig ausgetauscht werden müssen.


Sensoren nehmen Daten auf und verschicken sie: Dank thermoelektrischem Generator können sie das völlig autark – ohne Kabel oder Batterien.

Quelle: CC0 Creative Commons – Kein Bildnachweis nötig

In einem gemeinsamen Projekt arbeiten deshalb Wissenschaftler des Instituts für Integrierte Produktion Hannover gGmbH (IPH) und des Instituts für Physikalische Chemie und Elektrochemie (PCI) der Leibniz Universität Hannover daran, einen flexiblen, thermoelektrischen Generator zu entwickeln. Dieser soll nach dem Prinzip des Energy Harvesting in der Lage sein, selbstständig Energie aus der Umgebung zu generieren.

Dazu macht sich der Generator den thermoelektrischen Effekt nach SEEBECK zunutze. Dieser besagt, dass es in einem Leiter mit örtlich unterschiedlicher Temperatur durch Thermodiffusion zur Ausbildung eines elektrischen Feldes kommt.

Zwischen der heißen und der kalten Seite entsteht also eine elektrische Spannung, die genutzt wird, um einen Sensorknoten anzutreiben. Der Sensorknoten besteht wiederum aus einem Mikrokontroller, mehreren Sensoren und einem Sender. Wird der Mikrokontroller mit Strom versorgt, sind die daran angebrachten Sensoren in der Lage, Informationen aufzunehmen und durch den Sender weiterzugeben.

Jedoch ist die entstehende Spannung abhängig von der Materialkombination sowie der Geometrie und Verschaltung des Generators. Ein Ziel der Wissenschaftler ist es also, herauszufinden, welche Kombination sich am besten zur Stromerzeugung eignet.

In kommerziellen thermoelektrischen Generatoren wird häufig Bismuttellurid verwendet, das sehr gute thermoelektrische Eigenschaften besitzt. Tellur ist jedoch toxisch und zählt außerdem zu den seltenen Erden. Darum arbeiten die Wissenschaftler am IPH und PCI mit einem Material auf Basis von Calciumkobaltoxid, das ebenfalls gute thermoelektrische Eigenschaften aufweist und gleichzeitig unbedenklich ist.

Die Wissenschaftler haben zunächst das Ziel, eine Calciumkobaltoxid-Paste zu entwickeln, die sich günstig und skalierbar in einem einfachen Siebdruckprozess verarbeiten lässt. Aus dieser Paste werden kleine „Beinchen“ (engl. Legs) gedruckt. Ein zweites Material dient zur Kontaktierung.

Beinchen aus Calciumkobaltoxid und Kontaktmaterial werden abwechselnd aufgebracht und bilden eine Reihe aus vielen Paaren (engl. Couple). Jedes dieser Paare erzeugt durch den Temperaturunterschied zwischen Ober- und Unterseite eine kleine Spannung. In Reihe geschaltet addieren sich diese zu einer Gesamtspannung, mit der die Sensorknoten betrieben werden können.

Im Anschluss prüfen die Wissenschaftler, welche geometrische Auslegung sich am besten eignet, um einen maximalen Leistungsoutput zu erreichen. Außerdem untersuchen sie, wie viel Energie ein solcher Generator tatsächlich bereitstellen kann und wie groß er dabei sein darf.

Mit den Projektergebnissen leisten die Wissenschaftler einen weiteren Beitrag zur Industrie 4.0, indem sie drahtlose Sensornetzwerke in die Infrastruktur der Fabriken einpflegen, die sowohl zur Gebäudeautomation als auch zur Anlagenüberwachung dienen können.

Weitere Informationen erhalten Sie unter http://druckteg.iph-hannover.de

Susann Reichert | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.iph-hannover.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Erste integrierte Schaltkreise (IC) aus Plastik
17.02.2018 | Max-Planck-Institut für Polymerforschung

nachricht Verborgene Talente: Mit Bleistift und Papier Wärme in Strom umwandeln
16.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics