Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

OLED-Licht für den Alltag

06.08.2012
Gestartetes BMBF-Verbundprojekt "Kobalt" will die letzten technischen Herausforderungen lösen, um organische Leuchtdioden in die Allgemeinbeleuchtung zu überführen.

BMBF-Verbundprojekt Kobalt / VDI Technologiezentrum GmbH


Dynamische Wand aus OLED-Lichtelementen © Philips GmbH

Das vom Bundesministerium für Bildung und Forschung (BMBF) geförderte Verbundprojekt „Kobalt“ ist Anfang August 2012 gestartet und soll in den kommenden drei Jahren entscheidende Antworten auf die derzeit wichtigsten Fragen bei der anstehenden Einführung der modernen OLED-Technologie in die Allgemeinbeleuchtung geben.

Zum einen ist dazu die Lebensdauer weißer OLED-Systeme signifikant zu erhöhen, was innerhalb des Projektes durch die weitere Verbesserung der verwendeten OLED-Materialien und ein umfassendes, physikalisches Verständnis der zentralen Alterungsmechanismen einer OLED gelingen soll.

Zweites zentrales Projektziel ist die Erforschung innovativer Prozesstechnologien zur deutlichen Reduktion der Fertigungskosten. Derzeit liegen die Herstellungskosten von OLED-Leuchtelementen noch weit über denen herkömmlicher Leuchtmittel. So finden OLED-Bauteile heute – wenn überhaupt – nur in sehr hochpreisigen Nischenanwendungen Verwendung. Mit der Erforschung alternativer, kostengünstiger Funktionsmaterialien und grundlegend neuer, innovativer Prozesstechniken wollen die in Kobalt beteiligten Unternehmen den Nachweis erbringen, dass die Fertigungskosten moderner OLED-Bauelemente drastisch gesenkt werden können.

Gelingt dies, so sind die Grundlagen für eine breite Nutzung der OLED-Technologie in der Allgemeinbeleuchtung in Deutschland erfolgreich gelegt. Damit bleibt der High-Tech-Standort Deutschland auch im 21. Jahrhundert beim Thema Licht Weltspitze!

OLED-Hintergrund

Seit Jahren wird in den deutschen Laboren fieberhaft an der nächsten Beleuchtungsgeneration geforscht: den Organische Leuchtdioden – oder kurz OLEDs genannt. Die dünnen Leuchtflächen weisen einige Vorteile gegenüber der konventionellen Beleuchtung auf: Sie sind besonders energiesparend, denn im Vergleich zur Glühbirne benötigen sie nur ein Fünftel der elektrischen Leistung. Die große Besonderheit stellen jedoch ihre physikalischen Eigenschaften dar: OLEDs sind superflach, leicht und potenziell flexibel. Sie bringen große Flächen gleichmäßig zum Leuchten und spenden ein angenehm warmes Licht.

Für die kommenden Jahre sagen Beleuchtungsexperten einen stark steigenden Anteil der organischen Leuchtdioden am Beleuchtungsmarkt voraus. Bereits heute ist Deutschland einer der weltweit führenden Standorte im Bereich der Beleuchtungstechnik. Von der chemischen Industrie, die die organischen Materialien für den OLED-Aufbau zur Verfügung stellen, bis zum Maschinenbau und zu den Herstellern von Beleuchtungslösungen sind alle Teile der Wertschöpfungskette in Deutschland gleichermaßen stark abgedeckt.

Diese Stellung gilt es zu verteidigen und weiter auszubauen, um so die Zukunftstechnologie OLED in Deutschland nachhaltig zu etablieren und qualifizierte Arbeitsplätze langfristig zu sichern und zahlreiche neue zu schaffen. Bis zu einer breiten Markteinführung müssen jedoch noch einige Herausforderungen angegangen werden. Einen wesentlichen Beitrag dazu soll das BMBF-Verbundprojekt „Kobalt“ leisten.

Das Verbundprojekt Kobalt ist am 01. August 2012 im Rahmen der BMBF-Initiative „Organische Elektronik, insbesondere Organische Leuchtdioden und Organische Photovoltaik“ gestartet und läuft bis zum 31. Juli 2015. Das Bundesministerium für Bildung und Forschung unterstützt das Projekt mit knapp 17,4 Millionen Euro. Mit der Projektträgerschaft hat das BMBF die VDI Technologiezentrum GmbH beauftragt.

Partner im BMBF-Verbundprojekt Kobalt
• Philips GmbH, Aachen
• BASF SE, Ludwigshafen
• Aixtron AG, Herzogenrath

Daniela Metz | VDI
Weitere Informationen:
http://www.photonikforschung.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics