Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode zur Optimierung von OLEDs. Regensburger Forscher entwickelt „Singulett-Harvesting“

18.04.2011
Organische Leuchtdioden (OLEDs) gehören zu den Technologien der Zukunft. Für die Produktion flacher Fernsehbildschirme, transparenter Displays oder großflächiger Beleuchtungssysteme werden OLEDs besonders geeignet sein.

Denn im Gegensatz zu herkömmlichen LEDs weisen OLEDs große Vorteile auf: Sie sind relativ einfach herzustellen, sehr dünn, energiesparend und sogar auf flexiblen Trägerfolien einsetzbar. Mit der neuen Technologie ist somit eine preiswerte Opto-Elektronik mit geringem Energieverbrauch realisierbar.

Allerdings leiden OLEDs noch an Kinderkrankheiten. Kopfzerbrechen bereitet unter anderem die unterschiedliche Haltbarkeit der einzelnen Pixel, was negative Auswirkungen auf die Bildqualität hat. Bislang strahlen nur die Farben Rot und Grün intensiv und dauerhaft. Ein weiteres Problem liegt in der noch zu lang anhaltenden Lichtabstrahlung der leuchtenden Moleküle (Emittermoleküle). So zeigen sich nach Anregung eines Großteils oder aller Emittermoleküle Sättigungseffekte und es kommt zu unerwünschten Energieverlusten.

In diesem Zusammenhang gelang nun Prof. Dr. Hartmut Yersin vom Institut für Physikalische und Theoretische Chemie der Universität Regensburg ein wichtiger Durchbruch. Durch das von Yersin entwickelte Verfahren des „Singulett-Harvesting“ kann die Zeit der Lichtabstrahlung bzw. die Emissionslebensdauer der Emittermoleküle deutlich verringert und der Wirkungsgrad der OLEDs erheblich verbessert werden. Darüber hinaus ermöglicht dieses neue Verfahren die Verwendung von wesentlich preiswerteren Materialien als bisher.

Elektroluminiszenz als Grundlage von OLEDs

Die OLED-Technologie nutzt das Prinzip der Elektrolumineszenz. Dabei handelt es sich um eine spezielle Form der Luminiszenz (Lichtausstrahlung), bei der eine Anordnung von dünnen Schichten durch das Anlegen einer elektrischen Spannung dazu gebracht wird, Licht zu emittieren bzw. abzugeben. Die Elektrolumineszenz in einer OLED basiert auf der Zusammenführung (Rekombination) zweier entgegengesetzter Ladungsträger (Elektronen und Defekt-Elektronen bzw. „Löcher“) unter Erzeugung eines angeregten Zustandes. Beide Ladungsträger wandern unter der Wirkung eines elektrischen Feldes, d. h. nach Anlegen einer Spannung von einigen Volt, in Richtung der jeweiligen Gegenelektrode. Treffen die beiden Ladungen zwischen den Elektroden aufeinander, kommt es zur Rekombination. Hierbei wird ein nach außen ungeladenes Elektron-„Loch“-Paar, das sogenannte Exziton, gebildet, das schließlich unter der Beteiligung der Emittermoleküle über die Abstrahlung von Licht wieder in den Grundzustand übergeht.

Der Aufbau von OLEDs: Ein leuchtendes „Sandwich“

OLEDs sind dafür wie ein „Sandwich“ aufgebaut. Sie bestehen aus mehreren, extrem dünnen Schichten. Eine davon, die Kathode, injiziert Elektronen. Eine andere, die Anode, entfernt Elektronen, so dass „Löcher“ entstehen. Elektronen und Löcher können sich frei bewegen und treffen in einer dünnen Schicht zwischen Kathode und Anode zusammen. Diese Schicht enthält die wichtigen Farbstoffmoleküle. Hier wird die Energie in Form eines Photons freigesetzt und Licht emittiert. Wenn ein Elektron und ein Loch in der Farbstoffschicht zusammentreffen, gibt es dabei – aufgrund des Eigendrehimpulses bzw. des Spins der Elektronen - vier denkbare, sogenannte Spinkombinationen. Eine davon bildet ein so genanntes Singulett, die drei anderen führen zu Tripletts. Entsprechend werden auch Emittermaterialien, die in OLEDs eingesetzt werden, als Singulett- bzw. Triplett-Emitter bezeichnet.

Unterschiedliche Effizienz der OLED-Emitter

Aufgrund der möglichen Spinkombinationen werden die Singulett- und Triplett-Zustände im Verhältnis 1:3 gebildet. Daraus ergibt sich, dass Singulett-Emitter nur etwa 25 % der erzeugten Exzitonen ausnutzen können. Die dabei erzeugte Emission, die sogenannte Fluoreszenz, wird zudem in sehr kurzer Zeit abgestrahlt. Dagegen können bei einer Triplett-Emission, die als langlebige Phosphoreszenz auftritt, sämtliche Exzitonen ausgenutzt, umgewandelt und als Licht emittiert werden („Triplett-Harvesting“). Denn der große Vorteil von phosphoreszierenden Emittern besteht auch darin, dass sowohl der Singulett-Zustand als auch die drei möglichen Triplett-Zustände eines Exzitons für die Emission genutzt werden können. Daher sind phosphoreszierende Triplett-Emitter im Allgemeinen besser geeignet, in OLEDs für eine hohe Lichtausbeute zu sorgen. Ein Nachteil ist allerdings dadurch gegeben, dass bei der Phosphoreszenz Sättigungseffekte auftreten können. Damit wird der Wirkungsgrad deutlich reduziert, und zwar besonders bei Beleuchtungssystemen mit hohen Helligkeitsanforderungen.

Vorteile gewinnbringend kombinieren: Das „Singulett-Harvesting“

Das von Prof. Yersin entwickelte Verfahren ermöglicht durch die Ausnutzung eines besonderen Effektes eine drastische Verkürzung der Emissionslebensdauer der Emittermoleküle, wobei die hohe Effizienz, die mit dem „Triplett-Har¬ves¬ting“ verbunden ist, ebenfalls voll erreicht werden kann. Es handelt sich um das neue „Singulett-Harvesting-Verfahren“. Hierbei werden die jeweiligen Vorteile der Emission aus dem Singulett-Zustand und dem Triplett-Zustandes verknüpft. Durch Verwendung von sehr preiswerten Metall-Komplexen, die kleine Singulett-Triplett-Energieabstände aufweisen, kann eine überaus effiziente thermische Rückbesetzung aus dem zunächst sehr effektiv besetzten Triplett-Zustand in den Singulett-Zustand erfolgen. Die Vorteile von Tripletts (Effizienz) und von Singuletts (Kurzlebigkeit der Emission) werden so gewinnbringend kombiniert.

Auf der Grundlage des „Singulett-Harvesting-Effekts“ sind bereits mehrere Patente entstanden. Das neue Verfahren wird künftig in der OLED-Entwicklung eine wichtige Rolle spielen. Die Ergebnisse sind darüber hinaus vor kurzem in der renommierten Fachzeitschrift „Coordination Chemistry Review“ erschienen (DOI: 10.1016/j.ccr.2011.01.042)

Ansprechpartner für Medienvertreter:
Prof. Dr. Hartmut Yersin
Universität Regensburg
Institut für Physikalische und Theoretische Chemie
Tel.: 0941 943-4464
Hartmut.Yersin@chemie.uni-regensburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Seilzugsensor MH60 – erfolgreicher Einsatz in rauer Umgebung
20.04.2018 | WayCon Positionsmesstechnik GmbH

nachricht Treiber für Digitalisierung von Industrieanlagen: ABB, HPE und Rittal stellen Secure Edge Data Center vor
20.04.2018 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics