Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nature-Veröffentlichung befasst sich mit Photovoltaik - Energie-Barriere überwinden

27.08.2012
Wenn Solarzellen Sonnenenergie in Strom umwandeln, ist ihr Wirkungsgrad begrenzt. Um das Limit zu umgehen und mehr Leistung zu bekommen, kann man die Elektron-Loch-Paare spalten, die jedes Sonnenlichtteilchen erzeugt.
Diesen „Aus eins mach zwei und mehr“-Vorgang bezeichnet man in organischen Molekülen als Singulett Spaltung. Obschon seit langem bekannt, wurde er nie vollständig verstanden. Internationale Forscher zeigen jetzt, dass klassische Modelle, die den Prozess beschreiben, nicht ausreichen. Experimentalphysiker Dr. Manuel Ligges von der Uni Duisburg-Essen (UDE), Prof. Xiaoyang Zhu und Dr. Wai-Lun Chan von der University of Texas, Austin, erklären in der Nature Chemistry warum.

Um es vorwegzunehmen: Die Arbeit der Wissenschaftler wird die Entwicklung der Photovoltaik nicht auf den Kopf stellen. Doch um mehr aus der konventionellen Technik herauszuholen – sie hat derzeit einen Wirkungsgrad von 20-25 Prozent –, muss man natürlich die Mechanismen verstehen. Ligges und seine Kollegen aus Austin haben einen Schritt in diese Richtung getan.

Und darum geht es genau: In einer handelsüblichen Solarzelle erzeugt jedes Lichtteilchen, sprich Photon, ein Elektron-Loch Paar, welches aufbrechen kann und somit zu einem Stromfluss führt. Es kann aber maximal nur rund 30 Prozent der eingestrahlten Sonnenenergie umgewandelt werden. Dieses so genannte „Shockley-Queisser-Limit“ lässt sich jedoch umgehen. Etwa so: „Man erzeugt zunächst ein Elektron-Loch-Paar hoher Energie, das dann anschließend in zwei oder mehrere Paare niedriger Energie zerfällt. Man nennt sie Multi-Exzitonen und den Prozess Singulett Spaltung oder englisch: Singlet Fission“, erklärt Manuel Ligges, der u.a. dank eines Leopoldina-Stipendiums für acht Monate an der University of Texas geforscht hat.

„Die bisher verwendeten Modelle zur Beschreibung des Prozesses gehen davon aus, dass die Spaltung entweder exothermisch oder endothermisch stattfinden“, erklärt der 32-Jährige weiter. „Das heißt, es wird entweder Energie bei der Spaltung frei oder man muss welche hinzufügen, um das primär angeregte Elektron-Loch Paar zu teilen.“

Genau mit letzterem Fall haben sich die drei Wissenschaftler beschäftigt. „In einem endothermischen Prozess müsste die Effizienz der Spaltung sehr stark von der Temperatur abhängen. Ein solches Verhalten konnten wir aber nicht feststellen. Die klassischen Modelle sind somit nicht haltbar.” Eine weitere Arbeit des Trios, über die das renommierte Magazin Science bereits berichtete, stützt diesen Befund.

„Wir haben ein ganz anderes Verhalten beobachtet. Es lässt darauf schließen, dass das primär angeregte Elektron-Loch Paar kohärent an den Endzustand, also das Multi-Exziton, koppelt. Dieser Sachverhalt lässt sich nur schwer mit einfachen Worten erklären”, so Ligges. „Er besagt im Grunde, dass die Aufenthaltswahrscheinlichkeit der Elektronen verschwimmt. Dagegen ist man bisher davon ausgegangen, dass das Elektron von einem Zustand zum anderen ‚hüpft‘, was es eben nicht macht.“

Was bleibt also zu tun? Will man ergründen, was beim Spaltungs-Prozess im Detail abläuft, müssen die klassischen Modelle überarbeitet werden. Dann könnte in fünf bis zehn Jahren Jahren tatsächlich die Effizienz von Solarzellen über das konventionelle Limit von 30 Prozent gesteigert werden, prognostiziert Experimentalphysiker Ligges vorsichtig. „Man muss nun von theoretischer Seite darangehen und die Erkenntnisse auch technisch umsetzen.“ Für ihn sind die Arbeiten auf diesem Gebiet abgeschlossen. Er beschäftigt sich zurzeit u.a. mit quantenphysikalischen Fragen der Nanowelt.

Wai-Lun Chan, Manuel Ligges, X-Y. Zhu: The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain, in: Nature Chemistry, 19. August 2012. doi: 10.1038/nchem.1436. Eine Printversion erscheint in Heft Nr. 4.

Weitere Informationen: Dr. Manuel Ligges,
Tel. 0203/379-4547, manuel.ligges@uni-due.de

Redaktion: Ulrike Bohnsack, Tel. 0203/379-2429

Katrin Koster | idw
Weitere Informationen:
http://www.uni-due.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie