Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kompostierbare Elektronik zum Ausdrucken

11.08.2015

Knapp zwei Millionen Tonnen Elektroschrott fallen pro Jahr in Deutschland an. Gedruckte Elektronik befördert den Wegwerftrend, indem sie Herstellungskosten senkt und mit Einwegprodukten, wie interaktiven Verpackungen oder intelligenten Pflastern, neue Märkte erschließt. Nachwuchsforscher am Karlsruher Institut für Technologie (KIT) entwickeln daher gedruckte Elektronik aus kompostierbaren Naturmaterialen sowie Verfahren für eine industrielle Produktion. Das Bundesministerium für Bildung und Forschung unterstützt die Nachwuchsgruppe für vier Jahre mit insgesamt 1,7 Millionen Euro.

Halbleiter und Farbstoffe aus Pflanzenextrakten oder Isolatoren aus Gelatine – die Nachwuchswissenschaftler arbeiten mit biologisch leicht abbaubaren Materialien. „Diese sind zwar nicht so langlebig wie die anorganischen Alternativen, doch die Lebensdauer von Einwegelektronik überstehen sie schadlos“, sagt Dr. Gerado Hernandez-Sosa, Leiter der nun eingerichteten Nachwuchsforschergruppe Biolicht. Zudem könne man die Elektronik, sobald sie ausgedient hat, einfach in den Biomüll oder auf den Kompost werfen, wo sie gleich einer Bananenschale verrotte.


Biomüll statt Elektroschrott: Für biologisch leicht abbaubare elektronische Bauteile entwickelt die BMBF-Nachwuchsgruppe Biolicht am KIT nachhaltige Druckmaterialien und Tinten

Bild: KIT

Für gängige gedruckte Elektronik, etwa für organische Leuchtdioden (OLEDs), gilt dies bislang nicht. „Als ‚organisch‘ bezeichnen wir alle Kunststoffe auf Kohlenstoffbasis. Über die Umweltverträglichkeit sagt der Begriff allein noch nicht aus“, erklärt Dr. Hernandez-Sosa. So sei beispielsweise die Trägerfolie von OLEDs – das Papieräquivalent für elektronische Tinten – aus dem gleichen Plastik wie herkömmliche Getränkeflaschen.

Die Nachwuchsgruppe Biolicht verwendet hierfür nur Materialien, die in der Natur tatsächlich vorkommen. Als Trägerfolien eignen sich beispielsweise Speisestärke, Zellulose oder Chitin. Auf Metalle und Halbmetalle, wie Silizium, verzichten die Wissenschaftler fast vollständig. Der Vorteil von Plastik: Es ist biegsam, kostengünstig und lässt sich zu kilometerlangen Druckerfolien verarbeiten. Mit dieser Technologie wird es möglich, etwa Aufkleber mit einer elektronischen Ampel für das Haltbarkeitsdatum oder Pflaster mit eingebauten Sensoren, die den Heilungsprozess überwachen, im industriellen Maßstab herzustellen.

Zunächst gilt es allerdings auf die kompostierbaren Folien elektronische Bauteile zu drucken, ähnlich wie Buchstaben auf Papier. Ihre Funktion hängt von der verwendeten Tinte ab: Anstelle von Farbpartikeln sind darin leitende, halbleitende oder nichtleitende, also isolierende, Materialien gelöst. Nach dem Auftragen trocknet das flüssige Lösemittel und die zurückbleibende Schicht bildet das entsprechende Bauteil. Ziel der Nachwuchsgruppe ist es, biologisch abbaubare Tinten zu entwickeln, die auf das neue Folienmaterial abgestimmt sind und gleichzeitig mit bestehenden Geräten gedruckt werden können. „Hersteller organischer Elektronik können so auf die umweltfreundlichen Materialien umsteigen, ohne ihr Druckerarsenal auszutauschen“, sagt Dr. Hernandez-Sosa.

Für die Tinten müssen die Nachwuchswissenschaftler nun umweltverträglichen Materialen mit den gewünschten elektrischen Eigenschaften identifizieren. Beispielsweise eignet sich die Hartgelatine, aus der Medikamentenkapseln bestehen, zum Isolieren. Aufwendig ist auch die Wahl des Lösemittels: Eine Voraussetzung ist, dass es bei druckfähigen Temperaturen in flüssiger Form vorliegt. Weiterhin darf es im Unterschied zu gewöhnlicher Tinte nicht in das Trägermaterial eindringen, sondern sollte darauf einen geschlossenen Flüssigkeitsfilm bilden, ohne abzuperlen.

Ein zu dickflüssiges Lösemittel verstopft die Poren des Druckers. Ein zu dünnflüssiges verläuft auf der Trägerfolie und benetzt sie nicht gleichmäßig. Die Eigenschaften des getrockneten Materialfilms sind aber für die Funktion der elektrischen Bauteile entscheidend: So darf seine Dicke, die weniger als einem tausendstel Millimeter beträgt, maximal um fünf Prozent schwanken. Die Wissenschaftler rechnen damit, kompostierbare organische Elektronik innerhalb der nächsten drei Jahre marktreif zu machen.

Die Nachwuchsgruppe Biolicht ist strukturell am Institut für Lichttechnik des KIT angesiedelt. Ihre Labore hat sie am InnovationLab in Heidelberg, einer anwendungsorientierten Forschungs- und Transferplattform von Wissenschaft und Wirtschaft. Träger sind neben dem Karlsruher Institut für Technologie, die Unternehmen BASF SE, Merck, Heidelberger Druckmaschinen AG und SAP AG sowie die Universität Heidelberg.

Mehr Informationen zur Forschergruppe:

http://www.innovationlab.de/de/forschung/devicephysik/ag-hernandez-sosa

Video zur Forschung:

http://www.kit.edu/videos/druckbareelektronik

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Lilith C. Paul, Young Investigator Network, Tel.: +49 721 608 46184, E-Mail: lilith.paul@kit.edu

Das Karlsruher Institut für Technologie (KIT) vereint als selbständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine drei Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://www.innovationlab.de/de/forschung/devicephysik/ag-hernandez-sosa
http://www.kit.edu/videos/druckbareelektronik

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie