Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Farbsensoren für bessere Sicht

01.10.2009
CMOS-Bildsensoren von Spezialkameras – etwa bei Fahrerassistenzsystemen – sehen meist nur schwarzweiß und haben eine begrenzte Lichtempfindlichkeit. Dank eines neuen Fertigungsprozesses erkennen solche Sensoren nun Farbe und sind wesentlich lichtempfindlicher.

Die Autos der Zukunft haben eine Menge schlauer Assistenten an Bord – von der Einparkhilfe über die Verkehrsschilderkennung bis hin zum Totwinkel-Warner. Für viele Fahrassistenzsysteme sind hochwertige Kameras notwendig, die vielerlei Anforderungen genügen müssen.


Der neuartige CMOS-Bildsensor erkennt Farbe und ist wesentlich lichtempfindlicher als herkömmliche Sensoren. (© Fraunhofer IMS)

Sie müssen hohe Umgebungstemperaturen aushalten können sowie besonders klein, leicht und robust zugleich sein. Außerdem darf ihren Augen nichts entgehen, und sie sollten möglichst wenig kosten. Heutzutage verwendet man für die meisten Systeme im Auto CMOS-Sen-soren. Das sind Halbleiterchips, die Lichtsignale in elektrische Impulse verwandeln und in den meisten Digitalkameras eingebaut sind. Doch bisher sind die Sensoren für Industrie- und Spezialkameras meist farbenblind.

Nun bringen Forscher vom Fraunhofer-Institut für Mikroelektrische Schaltungen und Systeme IMS in Duisburg Farbe ins Spiel: Sie haben einen neuen Fertigungs-Prozess für CMOS-Bildsensoren entwickelt, der den Chips beibringt, Farbe zu sehen. Üblicherweise werden die Bildsensoren auf Silizium-Wafer mit Hilfe eines Halbleiterverfahrens hergestellt, dem CMOS-Prozess. »Wir haben ein Farbfiltersystem in den Prozess integriert«, erklärt Prof. Dr. Holger Vogt, stellvertretender Institutsleiter am IMS.

»So wie das menschliche Auge spezielle Zapfentypen benötigt, muss man Farbfilter vor die Sensoren schalten, damit sie Farben erkennen können.« Diese Aufgabe übernehmen gefärbte Polymere in den Grundfarben Rot, Grün und Blau. Jedes Pixel auf dem Sensor ist mit einer der drei Farben beschichtet. Dazu »schleudert« eine Maschine eine Mikrometer dicke Polymerschicht auf die Sensorscheibe auf. Mit Hilfe von UV-Licht und einer Maske, die nur an den gewünschten Pixeln lichtdurchlässig ist, härtet man die Farbe an den entsprechenden Stellen aus und wäscht den Rest anschließend ab. Darüber hinaus haben die Forscher spezielle Mikrolinsen entwickelt, die dem Sensor helfen, das Licht effizienter einzufangen und zu messen: Mit Hilfe eines durchsichtigen Polyimids verpassen sie jedem einzelnen Pixel seine eigene Linse, die die Lichtempfindlichkeit des Bildsensors auf fast das Doppelte steigert.

Nicht nur verbesserte Fahrerassistenzsysteme lassen sich mit dem optimierten CMOS-Prozess kostengünstig realisieren. Auch die Endoskopie etwa kann von den neuen Eigenschaften der CMOS-Bildsensoren profitieren. Auf der Messe Vision vom 3. bis 5. November in Stuttgart stellen die Forscher den CMOS-Prozess vor (Halle 6, Stand 6D12).

Prof. Dr. Holger Vogt | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2009/10/farbsensoren-fuer-bessere-sicht.jsp

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics