Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erleuchtung für das kleine Schwarze: Dehnbare Leiterplatte lässt Textilien funkeln

28.05.2009
Dior, Versace, Gucci - sie alle werben mit extravaganten Stoffen oder schreienden Ausschnitten um die Gunst der Life-Style-Society. Doch keines ihrer Gewänder vermag, was ein Kleid des Fraunhofer IZM kann: durch winzige, in den Stoff integrierte Dioden leuchtet es.

Und nicht nur das, denn das Funkeln ist kein elektronisches Paillettenimitat: Durch integrierte Beschleunigungssensoren und einem Mikrocontroller werden die Bewegungen der Trägerin detektiert und die Dynamik in ein Lichtmuster umgewandelt. Möglich wird das textil-integrierte LED-Display durch eine der derzeit spannendsten Entwicklungen aus dem Bereich der Leiterplattenindustrie: den dehnbaren Schaltungsträger.

Im europäischen Forschungsprojekt STELLA (STretchable ELectronics for Large Area Applications) wurde am Fraunhofer IZM und der TU Berlin ein Prozess zur Herstellung dehnbarer Schaltungsträger entwickelt (SCB: Stretchable Circuit Board). Zur Verwendung als Substratmaterial erwies sich dabei eine dehnbare Folie aus Thermoplastischem Polyurethan (TPU) als besonders geeignet. TPU ist in der Textilindustrie seit Langen aufgrund hervorragender Eigenschaften wie Reiß- und Abriebfestigkeit vielseitig eingesetzt und erprobt, so zum Beispiel als atmungsaktive Membran in Regenschutzbekleidung.

Um die hoch leitfähigen, aber an sich starren Kupferleiterbahnen ebenfalls Dehnungen aussetzen zu können, werden diese in Form kleiner Mäander auf dem Substrat strukturiert. Je nach Design der Mäanderbögen und Anwendungsbereichen konnten die Forscher damit Elastizitäten von bis zu 300 Prozent erreichen.

Bei der Entwicklung des dehnbaren Schaltungsträger wurde Wert auf die Realisierung unter Zuhilfenahme konventioneller Fertigungsprozesse der Leiterplattenindustrie gelegt. So wird eine 18-35 µm dünne Kupferfolie auf das TPU laminiert, welche dann mit gängigen Belichtungs- und Ätztechniken strukturiert werden kann. Momentan arbeiten die Fraunhofer-Forscher am Aufbau doppelseitiger Verdrahtungsträger mit Durchkontaktierungen und der Einbettung von bis zu 100 µm schmalen Leiterbahnen in die Polymerfolie. Auch an einer schützende Abdeckung der Leiterbahnen und einer Verkapselung der elektronischen Komponenten wird gearbeitet, um das System vor mechanischen und klimatischen Umwelteinflüssen zu schützen. Besonders Herausfordernd ist die Zielsetzung, ein waschbares System zu entwickeln.

Beim Bestücken solcher Leiterplatten ist die größte Herausforderung der Übergang vom dehnbaren Substrat zu den starren Einzelkomponenten (Dioden, Treiber-ICs, usw.). Um die Elastizität an diesen Stellen zu unterdrücken, werden um die Komponenten herum Zugsperren in das Kupfer strukturiert. Sowohl für die Bestückung wie auch die anschließende Verkapselung wird auf gängige Materialien und Verfahren wie Niedertemperaturlote, leitfähige Klebeverbindungen, Dispensen oder Spritzguss zurückgegriffen.

Solche Verfahren sind kostengünstig und bei Leiterplattenherstellern seit Jahren etabliert. Die auf diese Weise hergestellte dehnbare Leiterplatte lässt sich dann in einem Standard-Verfahren, dem Thermopressen, bei etwa 190 °C problemlos in Textilien übertragen. Der Vorteil: die dehnbare TPU-Folie dient einerseits als Schaltungsträger, andererseits auch als Fixierung der Elektronik auf dem Textil. Nach dem Transferprozess bleiben sogar textile Eigenschaften wie Flexibilität, Reißbeständigkeit und Biegestabilität erhalten; die Elektronik "verschwindet" nahezu unsichtbar im Stoff.

Diese Vorteile zunutze machten sich Designstudenten von der HTW- und der UdK Berlin, die mit den Innovationen vom Fraunhofer IZM und der TU Berlin neue Konzepte für die smarte Kleidung der Zukunft realisiert haben. Die interdisziplinäre Kooperation zwischen Designern und einer Gruppe von Forschern vom Fraunhofer IZM wurde mit dem diesjährigen Avantex Innovationspreis für das interaktive Kleid ausgezeichnet.

Die Anwendungsmöglichkeiten des dehnbaren Schaltungsträgers begrenzt sich aber nicht nur auf "Fashionable Technologies", sondern ermöglichen beispielsweise neue Produkte im medizinischen Bereich. Gerade überall dort, wo Sensoren nah am Körper getragen werden müssen, um dessen Vitalparameter zu messen und zu überwachen, können dehnbare Schaltungsträger einen wichtigen Vorteil bieten: Sie passen sich der Form und der Dynamik des Körpers an und können so zuverlässig sowie komfortabel getragen werden.

Daher werden im Projekt STELLA zusammen mit den Partnern neue Produktideen realisiert: So ein Trikot für Kleinkinder deren Atmung überwacht wird, um den noch immer ungeklärten plötzlichen Kindstod zu verhindern. Ein "intelligenter" Wundverband kann Sekrete detektieren oder mittels Druckmessung dafür sorgen, dass der Verband nicht zu eng sitzt. Entwickelt wird auch ein Pflaster, das durch Elektrostimulation den Wundheilungsprozess beschleunigt.

Georg Weigelt | Fraunhofer Gesellschaft
Weitere Informationen:
http://www2.izm.fhg.de/Bilder/klight.zip
http://www.stella-project.eu
http://www.izm.fhg.de/news_events/news/index.jsp

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie