Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn die Elektrik unter den zündenden Funken leidet

22.10.2009
Elektrische Schaltungen leiden darunter, dass bei jedem Ein- und Ausschalten ein kleiner, aber extrem heißer Funke überspringt - ähnlich wie der Blitz bei einem Gewitter.

Was diese winzigen Funken im Inneren des Kontaktes anrichten, wusste man lange Zeit nicht genau, denn ihre enorme Energie entlädt sich auf wenigen tausendstel Millimetern. Erst die so genannte "Nano-Tomographie" ermöglicht einen extrem präzisen Einblick in das Innere von Werkstoffen.

Für seine Forschungen auf diesem Gebiet hat Frank Mücklich, Professor für Funktionswerkstoffe der Universität des Saarlandes, jetzt den Morton Antler Award erhalten.

Diese wissenschaftliche Auszeichnung wurde ihm nach seinem Festvortrag - der "Morton Antler Memorial Lecture" - auf der weltweit führenden Konferenz für elektrische Kontakte, der IEEE Holm Conference on Electrical Contacts in Vancouver, verliehen. Erstmals ging diese Auszeichnung an einen deutschen Forscher.

Elektrische Schaltsysteme, die heute in jedem Gebäude, jedem Haushaltsgerät und jedem Auto zu finden sind, leiden nicht nur unter dem mehrere tausend Grad heißen, blitzartigen Funkenschlag beim Ein- und Ausschalten. Auch Korrosion, mechanischer Verschleiß und Temperaturschwankungen schaden ihnen. Viele Geräteausfälle haben mit diesen Problemen an den elektrischen Kontakten zu tun. Diese Störanfälligkeit bekommen auch die Autohersteller zu spüren, die bereits heute mehrere tausend kleinster Schalt- und Steckkontakte in jedes Fahrzeug montieren. In künftigen Elektromobilen werden die Unternehmen sogar noch sehr viel höhere elektrische Ströme und Spannungen handhaben müssen.

In einem Forschungsprojekt mit Bosch, Siemens, der deutschen Edelmetallindustrie und weiteren Instituten untersuchten Professor Mücklich und sein Team mit Hilfe der Nano-Tomographie erstmals, wie die Schädigung elektrischer Schaltkontakte genau vonstatten geht. Man wollte verstehen, wie der beim Ein- und Ausschalten auftreffende Energieschock auf einen wenige tausendstel Millimeter kleinen Krater des Kontaktwerkstoffes einwirkt. Die Saarbrücker Wissenschaftler konnten zeigen, wie dieser Mikroblitz in Nanodimensionen das Innenleben des so genannten "Kontaktwerkstoffs" verändert und - je nach Belastung - schließlich die Lebensdauer des Bauelementes beendet. Mit diesen Erkenntnissen sollen nun neue Materialien entwickelt werden, denen die kurzzeitige extreme Hitze des Funkens von bis zu 6000 Grad Celsius nichts ausmacht. "Mit robusteren Materialien und einem maßgeschneiderten Innenleben der Werkstoffe wird man die Haltbarkeit von elektrischen Schaltsystemen wesentlich erhöhen können und möglicherweise auch mit weniger kostbaren Edelmetallen auskommen als heute", erläutert Frank Mücklich das Forschungsziel.

Die Nano-Tomographie funktioniert ähnlich wie die Computer-Tomographie in der medizinischen Untersuchung: Im Unterschied dazu wird der Körper aber nicht scheibchenweise durchleuchtet, sondern durch einen sehr präzisen Ionenstrahl systematisch in Scheiben von wenigen Nanometern Dicke zerlegt. Die dabei erfassten Bildserien werden anschließend im Computer wieder zum exakten räumlichen Abbild zusammengefügt. Durch die extrem hohe Auflösung der Nano-Tomographie und der unterschiedlichen Kontrastverfahren können die Materialforscher damit nicht nur chemisch analysieren, welche Atome wo enthalten sind, sondern sie können auch veranschaulichen, welche Gitterstruktur und Orientierung die Kristalle des Materials haben und welche Nanostrukturen daraus geformt wurden. Und sie können aus dem 3D-Bild an jeder Stelle die Folgen kleinster Materialveränderungen für die entscheidenden Eigenschaften berechnen - die Leitfähigkeit für Strom und Wärme beim Auftreffen des unvermeid-lichen Mikroblitzes.

Fragen beantwortet:

Prof. Dr. Frank Mücklich
muecke@matsci.uni-sb.de
Tel. 0681/302-70500

Friederike Meyer zu Tittingdorf | idw
Weitere Informationen:
http://www.uni-sb.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics