Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchsichtige Solarzellen

02.06.2009
Wären Solarzellen durchsichtig, ließen sie sich auch auf Fensterscheiben und Hausfassaden anbringen. Physikalische Werkstoffmodellierung hilft dabei, passende Materialien für transparente Elektronik zu entwickeln und so die Basis für durchsichtige Solarzellen zu legen.

Die Fensterscheibe eröffnet den Blick auf den Garten und das angrenzende Feld – und sieht aus wie jedes andere Fenster. Doch sie hat es in sich: Sie produziert Strom. Auch die Fassaden des Hauses nutzen die Sonne, um die Bewohner mit elektrischer Energie zu versorgen. So könnte die Stromversorgung der Zukunft aussehen. Die Fläche, die man zur Energiegewinnung nutzen könnte, würde durch transparente Solarzellen drastisch steigen.


Um die Vision von durchsichtigen Solarzellen und transparenter Elektronik real werden zu lassen, bräuchte man zwei verschiedene transparente Schichten: Solche, die den Strom über Elektronen leiten, die n-Leiter, und solche, in denen Elektronenlöcher für den Stromfluss sorgen, die p-Leiter. Um diese Materialien herzustellen, »verschmutzen« oder dotieren die Ingenieure das Grundmaterial mit wenigen anderen Atomen. Je nachdem, welche Atome sie dafür verwenden, erhalten sie die unterschiedlich leitenden Materialien. N-leitende transparente Stoffe sind Stand der Technik. Bei den p-Leitern sieht es allerdings schlecht aus: Die Leitfähigkeit ist zu gering, und oft hapert es auch an der Transparenz. Die Hersteller wünschen sich daher ein transparentes Grundmaterial, das sich gut n- und p-dotieren lässt.

Für die n-Leiter verwendet man bisher vor allem Indium-Zinn-Oxid. Eine teure Angelegenheit: Indium ist rar geworden, sein Preis hat sich seit 2002 verzehnfacht. Die Suche nach Ersatzstoffen läuft daher auf Hochtouren. Welche Stoffe eignen sich am besten? Womit dotiert man sie, um eine gute Leitfähigkeit zu erreichen? Wie sieht es mit der Transparenz aus? Forscher des Fraunhofer-Instituts für Werkstoffmechanik IWM haben im Verbundprojekt METCO mit weiteren Fraunhofer-Kollegen werkstoffphysikalische Modelle und Methoden entwickelt, die bei der Suche helfen. »Könnte man transparente p-Leiter mit ausreichender Leitfähigkeit herstellen, ließe sich komplett durchsichtige Elektronik herstellen«, sagt Dr. Wolfgang Körner, wissenschaftlicher Mitarbeiter am IWM. Die Forscher ermitteln aus elektronenmikroskopischen Aufnahmen zunächst die Korngrenzen, die im Material am häufigsten vorkommen – also Unregelmäßigkeiten in der Kristallstruktur.

Diese Defektstrukturen werden Atom für Atom modelliert. Simulationsmethoden berechnen, wie die Elektronen in diesen Strukturen und damit im Festkörper verteilt sind. Aus den Daten extrahieren die Forscher, wie leitfähig und transparent das Material ist. »So konnten wir etwa herausfinden, dass Phosphor sich für eine p-Dotierung von Zinkoxid zwar eignet, Stickstoff jedoch vielversprechender ist«, sagt Körner.

Dr. Wolfgang Körner | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.iwm.fraunhofer.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften
29.03.2017 | Technische Universität Dresden

nachricht Elektromobilität: Forschungen des Fraunhofer LBF ebnen den Weg in die Alltagstauglichkeit
27.03.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten