Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanooptik - eine Technologie mit hohem Innovationspotenzial

05.06.2007
Oberflächen mit flexiblem Brechungsindex für verbesserte Solarkollektoren/ Nanoantennen revolutionieren die Medizintechnik

Im Zuge der rasanten Entwicklung der Nanotechnologie hat sich auch die Nanooptik mit nicht minder großer Eigendynamik zu einer viel versprechende Zukunftstechnologie entwickelt. Zu diesem Ergebnis kam die VDE/VDI-Gesellschaft Mikroelektronik, Mikro- und Feinwerktechnik (GMM) anlässlich einer Expertenrunde. Danach gehören insbesondere photonische Kristalle und Kristallfasern, funktionale Nanomaterialien und die Bio-Nano-Photonik zu den künftigen Impulsgebern für Innovationen.

Photonische Kristalle sind neuartige optische Materialien, die im Hinblick auf ihr Anwendungspotenzial in der Telekommunikation auch als "Halbleiter für Licht" bezeichnet werden. Da die typischen Gitterkonstanten jedoch in der Größenordnung der Wellenlänge des Lichts liegen, stellt die Herstellung dreidimensionaler photonischer Kristalle für den Telekommunikations- oder gar sichtbaren Spektralbereich eine technologische Herausforderung dar. Mitarbeitern der Universität Karlsruhe ist es in Zusammenarbeit mit Wissenschaftlern vom Forschungszentrum Karlsruhe in der Helmholtzgemeinschaft jetzt gelungen, mit Hilfe des direkten Laserschreibens gezielt komplexe dreidimensionale Strukturen in photosensitive Materialien zu schreiben. Angaben der Wissenschaftler zufolge eröffnet das direkte Laserschreiben den Zugang zu Strukturen, die aufgrund ihrer Komplexität bisher nicht hergestellt werden konnten. Einem Unternehmen ist es bereits gelungen, neue und zugleich kompakte Superkontinuumslichtquellen auf der Basis von photonischen Kristallfasern zu entwickeln, die in der Messtechnik und Biophotonik zum Einsatz kommen sollen.

"Nanobrillen" für den besseren Duchblick

Ähnliche Innovationspotenziale sehen Experten der GMM in der Möglichkeit, diverse Nanomaterialien mit optischen und funktionalen Effekten auszustatten. So konnten Forscher unlängst mit Hilfe von dotiertem Zinnoxid optisch transparente, leitfähige Materialien sowie nahezu weiße Infrarotreflektoren realisieren. Mittels der Sol/Gel-Technik wurde ein SiO2-Nanosol auf Glasoberflächen aufgebracht. Nach der Aushärtung entstand eine nanoporöse Beschichtung, die es gestattet, den Brechungsindex der Oberfläche an die Umgebung anzupassen.

Mit Hilfe solcher Oberflächen ist es möglich, einschichtige Breitbandentspiegelungen zu erzeugen. Zu den vielfältigen Anwendungen gehört unter anderem die Verwendung als Deckglas zur Optimierung von Solarkollektoren. Auch für die Realisierung neuartiger Brillengläser, bei denen neben der optischen Performance der Schichten auch Lebensdauer, Abriebfestigkeit der Schichten eine zentrale Rolle spielt, ist die Technologie geeignet. Auf diesem Sektor wird insbesondere vom Einsatz von Nanopartikeln in Hartlacksystemen ein hohes Potential erwartet.

Fortschritte in der Bioanalytik

Als spektakulär sind jüngste Arbeiten zu plasmonischen Effekten von Nanopartikeln zu bezeichnen. Plasmonen sind elektromagnetische Wellen, die sich an metallischen Oberflächen entlang ausbreiten und an die Grenzfläche zwischen einer dünnen Metall- und einer Polymerschicht gebunden sind. Mit den entsprechenden Nanostrukturen ist es möglich, optische Signale zu leiten und zu verarbeiten. Am Institut für Photonische Technologien der Friedrich-Schiller-Universität Jena ist es einem Wissenschaftlerteam jetzt gelungen, Nanopartikel aus Gold in Form von Markierungen für die Bioanalytik zu nutzen. Diese Partikel erlauben eine technisch deutlich einfachere optische Detektion im Vergleich zu Fluoreszenzverfahren und verbessern gravimetrische Nachweise signifikant in ihrer Sensitivität.

Nanotechnik erobert die Tumortherapie

Besonders viel versprechend sind die Möglichkeiten, die sich aus der optischen Mikromanipulation ergeben. Bei der Photodynamischen Therapie werden beispielsweise chemische Substanzen, die in Krebsgewebe angereichert sind, mittels Laserbestrahlung in giftige Substanzen umgesetzt und so das Gewebe lokal zerstört. Mit Hilfe von Nanopartikeln, die wiederum als Nanoantennen eingesetzt werden können, lässt sich die Auflösung enorm erhöhen. Hierbei wird die durch die so genannte Plasmonenresonanz induzierte Absorption benutzt, um mittels Laserpulsen Energie spezifisch in die Partikel einzukoppeln, ohne die Umgebung zu schädigen. Durch die Nanoantennenwirkung wird die Auflösung in erster Näherung durch die Partikelgröße bestimmt und kann damit deutlich unterhalb der Wellenlänge des eingesetzten Lichtes liegen.

Die VDE/VDI-Gesellschaft Mikroelektronik, Mikro- und Feinwerktechnik (GMM) fördert die Weiterentwicklung der Mikroelektronik, Feinwerktechnik und Mikrosystem- und Nanotechnologie. Als interdisziplinäre und anwendungsbezogene Plattform tragen die mehr als 8.000 Mitglieder der GMM zur Weiterentwicklung ihrer Technologiebereiche bei und bündeln Kompetenzen bei der Bearbeitung neuer Felder.

Melanie Mora | idw
Weitere Informationen:
http://www.vde.com/gmm

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wie Protonen durch eine Brennstoffzelle wandern
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Omicron Diodenlaser mit höherer Ausgangsleistung und erweiterter Garantie
20.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblick ins geschlossene Enzym

26.06.2017 | Biowissenschaften Chemie

Laser – World of Photonics: Offene und flexible Montageplattform für optische Systeme

26.06.2017 | Messenachrichten

Biophotonische Innovationen auf der LASER World of PHOTONICS 2017

26.06.2017 | Messenachrichten