Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aerogele: Hoch poröse Stoffe für den Einsatz in Batterien

05.12.2001


Innere Struktur eines typischen Kohlenstoff-Aerogels: Kleinste graphitische Kügelchen sind miteinander zu perlenkettenartigen Strukturen verschmolzen. Rasterelektronenmikroskopisches Bild: Brandt


Aerogele sind hoch poröse Materialien, die viele Anwendungsmöglichkeiten bieten. Physiker von der Universität Würzburg arbeiten derzeit an der Verwirklichung sehr reiner und grob poröser Kohlenstoff-Aerogele. Diese gelten als hervorragende Kandidaten für den Einsatz in der Energietechnik.


In der Technik trifft man häufig auf das Problem, dass in einem kleinen Volumen eine möglichst große Oberfläche zur Verfügung stehen muss. Realisiert wird dieses Ziel meist durch poröse Feststoffe - so beispielsweise im Kfz-Katalysator und in Batterie-Elektroden sowie bei der Trennung von Gasen und der Wasserreinigung.

Die verschiedenen Anwendungen stellen unterschiedliche Anforderungen an die porösen Materialien. Besonders wichtig sind die Dichte, die elastischen Eigenschaften, die elektrische und thermische Leitfähigkeit, die Porengrößen und die Oberfläche pro Volumeneinheit.


Mit einem innovativen Verfahren zur Herstellung feinstporöser Materialien beschäftigt sich die Arbeitsgruppe von Prof. Dr. Jochen Fricke am Physikalischen Institut der Uni Würzburg. Die Wissenschaftler lösen dazu geeignete Ausgangsmoleküle in Wasser. Durch die Zugabe eines Katalysators verbinden sich die Moleküle zunächst zu winzigen Kügelchen, die sich dann wiederum zu perlenkettenartigen Strukturen zusammenlagern. Auf diese Weise entsteht ein Gel, das anschließend durch Trocknung in einen hoch porösen Feststoff - das Aerogel - umgewandelt wird.

Entscheidend bei diesem "Sol-Gel-Verfahren" ist die Tatsache, dass die Eigenschaften des Aerogels durch die Auswahl und Menge der Ausgangssubstanzen beeinflusst werden können. So lässt sich beispielsweise die Porengröße sehr stark variieren: Möglich sind feinste Poren mit einem Durchmesser von nur rund fünf Millionstel Millimeter (Nanometer), aber auch Poren, die schon mit bloßem Auge sichtbar sind.

Für die volumenspezifischen Oberflächen lassen sich mit Aerogelen enorme Werte erzielen: Bis zu 2.000 Quadratmeter Fläche finden in nur einem Kubikzentimeter Platz! Abhängig vom Gefäß, in dem das Sol-Gel-Verfahren abläuft, können zudem beliebige Gelformen realisiert werden.

In einem von der Deutschen Forschungsgemeinschaft unterstützten Projekt untersuchen die Würzburger Physiker, welchen Einfluss Art und Menge des verwendeten Katalysators auf die entstehenden Strukturen und Materialeigenschaften bei organischen und graphitischen Aerogelen ausüben. Sie hoffen insbesondere, sehr reine Kohlenstoff-Aerogele mit hoher elektrischer Leitfähigkeit und Stabilität herstellen zu können. Diese Aerogele sind für den Einsatz als Elektrodenmaterial in Primär- und Brennstoffzellen sowie in Superkondensatoren bestimmt.

Weiterhin eignen sich Kohlenstoff-Aerogele auch als ausgezeichnete Wärmedämmstoffe, denn sie besitzen eine hohe Temperaturbeständigkeit und eine geringe Wärmeleitfähigkeit. Wegen ihrer schwarzen Farbe sind sie auch besonders gut dazu geeignet, alle Arten von elektromagnetischer Strahlung (Licht, Infrarot, Mikrowellen) effizient zu absorbieren.

Weitere Informationen: Prof. Dr. Jochen Fricke, T (0931) 888-5740, Fax (0931) 888-5158, E-Mail: fricke@physik.uni-wuerzburg.de


Robert Emmerich | idw
Weitere Informationen:
http://miro.physik.uni-wuerzburg.de/agfricke

Weitere Berichte zu: Aerogel Katalysator Kohlenstoff-Aerogel Leitfähigkeit Poren

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wie Protonen durch eine Brennstoffzelle wandern
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Omicron Diodenlaser mit höherer Ausgangsleistung und erweiterter Garantie
20.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften