Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanolelektronik »gelötet« - Wie sich Kohlenstoff-Nanoröhrchen miteinander verbinden lassen

12.10.2001


Mit der Entdeckung der Fullerene im Jahre 1985 begann eine Renaissance des elementaren Kohlenstoffs. Vor allem als sich herausstellte, daß die fußballförmigen Fullerene nur eine von vielen möglichen Architekturen des graphitischen Kohlenstoffs sind, setzte eine ungeheure weltweite Aktivität zur Erforschung der neuen Kohlenstoff-Nanoteilchen ein. Als wichtigste neue Modifikation gelten inzwischen Nanoröhrchen, die 1991 von Iijima in Japan entdeckt wurden. Sie bestehen aus einer oder mehreren konzentrischen, zylinderförmigen Graphitlagen. Inzwischen gibt es eine Vielzahl von relativ einfachen Verfahren, Kohlenstoff- Nanoröhrchen herzustellen, z.B. durch Kondensation von Kohlenstoffdampf in einer Lichtbogenentladung.


Einlagige Kohlenstoff- Nanoröhrchen können Durchmesser von weniger als einem Nanometer, mehrlagige bis zu einigen zehn Nanometern haben. Damit sind sie nicht nur die kleinsten bekannten röhrenförmigen Gebilde in der Natur, sondern verfügen auch über ungewöhnliche Eigenschaften, die inzwischen für zahlreiche Rekorde in der Materialwissenschaft gesorgt haben. Ihre Reißfestigkeit übertrifft die der bisher stärksten Faserwerkstoffe um ein Vielfaches. Dabei verhalten sich die Röhrchen auch bei extremen Verbiegungen vollkommen elastisch und ermüdungsfrei. Inzwischen sind es jedoch hauptsächlich ihre elektrischen Eigenschaften, die ihnen eine große Zukunft versprechen. Die hohe elektrische Leitfähigkeit sorgt zusammen mit dem kleinen Durchmesser für ideale Eigenschaften als Feldemitter, die z.B. in der Bildschirmtechnik eine Schlüsselrolle spielen. Samsung in Korea hat bereits die ersten Displays mit Feldemittern auf der Basis von Nanoröhrchen vorgestellt. Bereits in wenigen Jahren könnte die Technologie der Flachbildschirme mit Hilfe von Nanoröhrchen revolutioniert und in dieser Form kommerziell erhältlich sein.

Leitfähige Kontakte

Kohlenstoff-Nanoröhrchen haben weitere Eigenschaften, die sie für Anwendungen in der Nanoelektronik höchst interessant machen. Kohlenstoffatome in einer Graphitlage bilden ein wabenförmiges Muster aus Sechsecken. Diese Graphitschicht kann einen Schraubensinn (Helizität) definieren, wenn man sie zu einem Zylinder aufrollt. Je nach Helizität verhält sich das Röhrchen entweder metallisch, also elektrisch ideal leitend, oder halbleitend. In der metallischen Konfiguration können Nanoröhrchen somit als Drähte verwendet werden, um kleinste elektronische Bauelemente miteinander zu verbinden. Bauelemente in der Nanoelektronik können auch aus halbleitenden Nanoröhrchen selbst aufgebaut sein. Vor wenigen Monaten wurde an der Universität Delft der erste bei Zimmertemperatur funktionsfähige Transistor auf der Basis von Nanoröhrchen im Labor realisiert. Damit Kohlenstoff-Nanoröhrchen miteinander und mit ihrer Peripherie verschaltet werden können, müssen elektrisch leitfähige Kontakte hergestellt werden, wie es z.B. durch Löten in der heutigen Elektronik geschieht. Auf dem Maßstab der Nanoröhrchen ist Löten mit flüssigen Metallen oder Punktschweißen nicht mehr ohne weiteres durchführbar. Es wurde deshalb seit längerem nach einer Methode gesucht, die leitfähige Verbindungen auf dem Maßstab von Nanometern herstellen kann. Eine solche Methode hat kürzlich PD Dr. Florian Banhart in der Zentralen Einrichtung Elektronenmikroskopie (Leiter Prof. Dr. Paul Walther) an der Universität Ulm entdeckt.



Proben, die Kohlenstoff-Nanoröhrchen enthielten, wurden längere Zeit unter normalen Umgebungsbedingungen gelagert. Dabei scheiden sich auf den Nanoröhrchen, wie auf fast allen Materialien, kleine Mengen von Kohlenwasserstoffen aus der Luft ab. Diese Probenkontamination ist seit langem wohlbekannt und im allgemeinen unerwünscht, da auf diese Weise saubere Oberflächen allmählich mit einer dünnen Kohlenwasserstoffschicht bedeckt werden. Bei Zimmertemperatur sind diese Kohlenwasserstoffmoleküle hochbeweglich und wandern beständig auf den Oberflächen. Wird eine solche Probe im Elektronenmikroskop dem für die Abbildung benötigten hochenergetischen Elektronenstrahl ausgesetzt, wandeln sich die Kohlenwasserstoffe unter dem intensiven Elektronenbeschuß in amorphen Kohlenstoff um, wobei der abgespaltene Wasserstoff entweicht. Der amorphe Kohlenstoff ist jedoch nicht mehr beweglich, was zur Folge hat, daß ständig Kohlenwasserstoff- Moleküle in den bestrahlten Bereich hineinlaufen, wo sie gespalten werden und als amorpher Kohlenstoff zurückbleiben. Auf diese Weise kann in dem bestrahlten Bereich je nach Bestrahlungsdauer kontrolliert eine bestimmte Menge an Kohlenstoff abgeschieden werden. Unter fortgesetzter Bestrahlung wandelt sich der amorphe in graphitischen Kohlenstoff um, der elektrisch leitfähig ist.

Kohlenstoff graphitisiert

Banhart führte dieses Experiment in einem kürzlich an der Universität Ulm installierten höchstauflösenden Rasterelektronenmikroskop durch. Zwei einander überkreuzende Nanoröhrchen wurden an der Kreuzungsstelle mit einem fokussierten Elektronenstrahl bestrahlt, so daß sich dort amorpher Kohlenstoff festsetzte. Die allmählich graphitisierende Kohlenstoff- Abscheidung verbindet nun die vorher lose aufeinanderliegenden Nanoröhrchen. Detaillierte Untersuchungen des Kreuzungspunktes mit einem hochauflösenden Transmissionselektronenmikroskop zeigen, daß der abgeschiedene Kohlenstoff tatsächlich graphitisiert vorliegt und die Röhrchen in idealer Weise verbindet. Da der Elektronenstrahl im Elektronenmikroskop auf einen Durchmesser von weniger als einem Nanometer fokussiert werden kann, sind in dieser Größenskala gezielte Abscheidungen von Kohlenstoff möglich. Dr. Banhart will nun in einem weiteren Schritt in Kooperation mit externen Spezialisten die elektrische Charakterisierung dieser Kontakte vornehmen. Bei der heutigen Kenntnis über die Natur des abgeschiedenen Kohlenstoffs ist zu erwarten, daß ein derartiger Kontakt eine gute elektrische Verbindung zwischen den Nanoröhrchen herstellt. Damit steht jetzt ein »Lötverfahren« auf der Nanometerskala zur Verfügung.

Das Hauptproblem bei der Anwendung von Nanoröhrchen in der Nanoelektronik stellt das gezielte Anordnen der Röhrchen in einem Netzwerk dar. Wenn aber die Röhrchen einmal »richtig liegen«, sollte die Integration des neuen Lötverfahrens in einen technischen Prozeß keine besonderen Schwierigkeiten mehr bereiten, da mit der Elektronenstrahl- Lithographie bereits ein Werkzeug zur computergesteuerten Behandlung von Oberflächen mit Elektronenstrahlen vorhanden ist.

| uni ulm intern
Weitere Informationen:
http://www.uni-ulm.de/uui/aktuell/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics