Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanolelektronik »gelötet« - Wie sich Kohlenstoff-Nanoröhrchen miteinander verbinden lassen

12.10.2001


Mit der Entdeckung der Fullerene im Jahre 1985 begann eine Renaissance des elementaren Kohlenstoffs. Vor allem als sich herausstellte, daß die fußballförmigen Fullerene nur eine von vielen möglichen Architekturen des graphitischen Kohlenstoffs sind, setzte eine ungeheure weltweite Aktivität zur Erforschung der neuen Kohlenstoff-Nanoteilchen ein. Als wichtigste neue Modifikation gelten inzwischen Nanoröhrchen, die 1991 von Iijima in Japan entdeckt wurden. Sie bestehen aus einer oder mehreren konzentrischen, zylinderförmigen Graphitlagen. Inzwischen gibt es eine Vielzahl von relativ einfachen Verfahren, Kohlenstoff- Nanoröhrchen herzustellen, z.B. durch Kondensation von Kohlenstoffdampf in einer Lichtbogenentladung.


Einlagige Kohlenstoff- Nanoröhrchen können Durchmesser von weniger als einem Nanometer, mehrlagige bis zu einigen zehn Nanometern haben. Damit sind sie nicht nur die kleinsten bekannten röhrenförmigen Gebilde in der Natur, sondern verfügen auch über ungewöhnliche Eigenschaften, die inzwischen für zahlreiche Rekorde in der Materialwissenschaft gesorgt haben. Ihre Reißfestigkeit übertrifft die der bisher stärksten Faserwerkstoffe um ein Vielfaches. Dabei verhalten sich die Röhrchen auch bei extremen Verbiegungen vollkommen elastisch und ermüdungsfrei. Inzwischen sind es jedoch hauptsächlich ihre elektrischen Eigenschaften, die ihnen eine große Zukunft versprechen. Die hohe elektrische Leitfähigkeit sorgt zusammen mit dem kleinen Durchmesser für ideale Eigenschaften als Feldemitter, die z.B. in der Bildschirmtechnik eine Schlüsselrolle spielen. Samsung in Korea hat bereits die ersten Displays mit Feldemittern auf der Basis von Nanoröhrchen vorgestellt. Bereits in wenigen Jahren könnte die Technologie der Flachbildschirme mit Hilfe von Nanoröhrchen revolutioniert und in dieser Form kommerziell erhältlich sein.

Leitfähige Kontakte

Kohlenstoff-Nanoröhrchen haben weitere Eigenschaften, die sie für Anwendungen in der Nanoelektronik höchst interessant machen. Kohlenstoffatome in einer Graphitlage bilden ein wabenförmiges Muster aus Sechsecken. Diese Graphitschicht kann einen Schraubensinn (Helizität) definieren, wenn man sie zu einem Zylinder aufrollt. Je nach Helizität verhält sich das Röhrchen entweder metallisch, also elektrisch ideal leitend, oder halbleitend. In der metallischen Konfiguration können Nanoröhrchen somit als Drähte verwendet werden, um kleinste elektronische Bauelemente miteinander zu verbinden. Bauelemente in der Nanoelektronik können auch aus halbleitenden Nanoröhrchen selbst aufgebaut sein. Vor wenigen Monaten wurde an der Universität Delft der erste bei Zimmertemperatur funktionsfähige Transistor auf der Basis von Nanoröhrchen im Labor realisiert. Damit Kohlenstoff-Nanoröhrchen miteinander und mit ihrer Peripherie verschaltet werden können, müssen elektrisch leitfähige Kontakte hergestellt werden, wie es z.B. durch Löten in der heutigen Elektronik geschieht. Auf dem Maßstab der Nanoröhrchen ist Löten mit flüssigen Metallen oder Punktschweißen nicht mehr ohne weiteres durchführbar. Es wurde deshalb seit längerem nach einer Methode gesucht, die leitfähige Verbindungen auf dem Maßstab von Nanometern herstellen kann. Eine solche Methode hat kürzlich PD Dr. Florian Banhart in der Zentralen Einrichtung Elektronenmikroskopie (Leiter Prof. Dr. Paul Walther) an der Universität Ulm entdeckt.



Proben, die Kohlenstoff-Nanoröhrchen enthielten, wurden längere Zeit unter normalen Umgebungsbedingungen gelagert. Dabei scheiden sich auf den Nanoröhrchen, wie auf fast allen Materialien, kleine Mengen von Kohlenwasserstoffen aus der Luft ab. Diese Probenkontamination ist seit langem wohlbekannt und im allgemeinen unerwünscht, da auf diese Weise saubere Oberflächen allmählich mit einer dünnen Kohlenwasserstoffschicht bedeckt werden. Bei Zimmertemperatur sind diese Kohlenwasserstoffmoleküle hochbeweglich und wandern beständig auf den Oberflächen. Wird eine solche Probe im Elektronenmikroskop dem für die Abbildung benötigten hochenergetischen Elektronenstrahl ausgesetzt, wandeln sich die Kohlenwasserstoffe unter dem intensiven Elektronenbeschuß in amorphen Kohlenstoff um, wobei der abgespaltene Wasserstoff entweicht. Der amorphe Kohlenstoff ist jedoch nicht mehr beweglich, was zur Folge hat, daß ständig Kohlenwasserstoff- Moleküle in den bestrahlten Bereich hineinlaufen, wo sie gespalten werden und als amorpher Kohlenstoff zurückbleiben. Auf diese Weise kann in dem bestrahlten Bereich je nach Bestrahlungsdauer kontrolliert eine bestimmte Menge an Kohlenstoff abgeschieden werden. Unter fortgesetzter Bestrahlung wandelt sich der amorphe in graphitischen Kohlenstoff um, der elektrisch leitfähig ist.

Kohlenstoff graphitisiert

Banhart führte dieses Experiment in einem kürzlich an der Universität Ulm installierten höchstauflösenden Rasterelektronenmikroskop durch. Zwei einander überkreuzende Nanoröhrchen wurden an der Kreuzungsstelle mit einem fokussierten Elektronenstrahl bestrahlt, so daß sich dort amorpher Kohlenstoff festsetzte. Die allmählich graphitisierende Kohlenstoff- Abscheidung verbindet nun die vorher lose aufeinanderliegenden Nanoröhrchen. Detaillierte Untersuchungen des Kreuzungspunktes mit einem hochauflösenden Transmissionselektronenmikroskop zeigen, daß der abgeschiedene Kohlenstoff tatsächlich graphitisiert vorliegt und die Röhrchen in idealer Weise verbindet. Da der Elektronenstrahl im Elektronenmikroskop auf einen Durchmesser von weniger als einem Nanometer fokussiert werden kann, sind in dieser Größenskala gezielte Abscheidungen von Kohlenstoff möglich. Dr. Banhart will nun in einem weiteren Schritt in Kooperation mit externen Spezialisten die elektrische Charakterisierung dieser Kontakte vornehmen. Bei der heutigen Kenntnis über die Natur des abgeschiedenen Kohlenstoffs ist zu erwarten, daß ein derartiger Kontakt eine gute elektrische Verbindung zwischen den Nanoröhrchen herstellt. Damit steht jetzt ein »Lötverfahren« auf der Nanometerskala zur Verfügung.

Das Hauptproblem bei der Anwendung von Nanoröhrchen in der Nanoelektronik stellt das gezielte Anordnen der Röhrchen in einem Netzwerk dar. Wenn aber die Röhrchen einmal »richtig liegen«, sollte die Integration des neuen Lötverfahrens in einen technischen Prozeß keine besonderen Schwierigkeiten mehr bereiten, da mit der Elektronenstrahl- Lithographie bereits ein Werkzeug zur computergesteuerten Behandlung von Oberflächen mit Elektronenstrahlen vorhanden ist.

| uni ulm intern
Weitere Informationen:
http://www.uni-ulm.de/uui/aktuell/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

nachricht Flüssiger Treibstoff für künftige Computer
15.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen