Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

IPP entwickelt Plasmaheizung per Neutralteilchen-Einschuss

11.10.2005


Blick in die Ionenquelle des IPP: Hier werden geladene Teilchen erzeugt und anschließend durch Beschleunigungsgitter auf hohe Geschwindigkeit gebracht. Foto: IPP


Eine Heizung für den Fusionstestreaktor ITER / Sonnentemperaturen im Labor

... mehr zu:
»IPP »ITER »Ion

Eine neuartige Ionenquelle zur Plasmaheizung des internationalen Fusionsreaktors ITER mit energiereichen Neutralteilchen wird zur Zeit im Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München entwickelt. Sie soll den Fusionsbrennstoff auf mehr als 100 Millionen Grad aufheizen. Das bewährte Heizverfahren an die Anforderungen der Großanlage ITER anzupassen, ist eine beträchtliche physikalisch-technische Herausforderung für das Entwicklungsteam - mit bisher viel versprechenden Ergebnissen.

Ziel der Fusionsforschung ist es, ein Kraftwerk zu entwickeln, das - ähnlich wie die Sonne - aus der Verschmelzung von Atomkernen Energie gewinnt. Die internationale Testanlage ITER (lat. "der Weg") soll zeigen, dass ein solches Energie lieferndes Fusionsfeuer möglich ist. Dazu muss der Brennstoff - ein dünnes ionisiertes Wasserstoffgas, ein "Plasma" - berührungsfrei in einem Magnetfeldkäfig eingeschlossen und bis zum Zünden des Fusionsfeuers auf hohe Temperaturen aufgeheizt werden. Ein erfolgreiches Verfahren ist die "Neutralteilchen-Heizung": Schnelle Wasserstoffatome, die in das Plasma eingeschossen werden, geben beim Zusammenstoßen mit den Plasmateilchen ihre Energie ab. Heutige Anlagen erreichen so auf Knopfdruck ein Mehrfaches der Sonnentemperatur.


Mit ITER kommen neue Anforderungen auf die bewährte Heizung zu: Zum Beispiel werden wesentlich höhere Pulslängen verlangt - eine Stunde, d.h. nahezu Dauerbetrieb, im Vergleich zu typisch zehn Sekunden bei heutigen Experimenten wie etwa bei ASDEX Upgrade im IPP in Garching. Zudem müssen die Teilchen für die Großanlage ITER drei- bis viermal schneller sein als bisher, damit sie tief genug in das Plasma hinein fliegen können.

So funktioniert die Neutralteilchen-Heizung: Um Wasserstoffatome beschleunigen zu können, müssen sie zunächst als geladene Teilchen - als positive oder negative Ionen - für elektrische Kräfte greifbar werden. In einer Plasmaquelle werden deshalb zunächst aus neutralem Wasserstoffgas durch Elektronen-Entzug positiv geladene Wasserstoffionen erzeugt, die anschließend durch hintereinander liegende Elektroden abgesaugt und beschleunigt werden. Vor dem Einschießen in das Plasma muss der Ionenstrahl wieder neutralisiert werden, weil geladene Teilchen durch das Magnetfeld des Plasmakäfigs abgelenkt würden: Dazu durchlaufen die Ionen einen Gasvorhang. Die meisten nehmen hier das fehlende Elektron wieder auf und fliegen als schnelle Neutrale weiter; der geladene Rest wird mit einem magnetischen Ablenksystem aus dem Strahl herausgezogen.

Die für ITER nötige hohe Teilchengeschwindigkeit verlangt nun eine Änderung des Verfahrens: Denn die bisher genutzten positiv geladenen Ionen lassen sich um so schlechter neutralisieren, je schneller sie sind - bei den für ITER gewünschten Geschwindigkeiten von 9000 Kilometern pro Sekunde fast gar nicht mehr. "Für ITER muss man daher zu negativ geladenen Ionen übergehen, die auch bei hohen Geschwindigkeiten gut neutralisierbar sind," erklärt Dr. Eckehart Speth, der Leiter des IPP-Bereichs Technologie. Sie lassen sich allerdings wesentlich schwieriger handhaben als positive Ionen: Das zusätzliche Elektron, das für die negative Ladung der Partikel verantwortlich ist, ist nur locker gebunden und entsprechend leicht wieder zu verlieren.

Um die fragilen Objekte für ITER herzustellen, kommen zwei unterschiedliche Methoden in Frage: Einzig das IPP hat Erfahrung mit so genannten Hochfrequenz-Quellen. Diese neuartige Ionenquelle wurde im IPP zusammen mit der Universität Gießen entwickelt und ist seit 1995 an ASDEX Upgrade in Betrieb - allerdings für positive Ionen. Von der Technologieagentur EFDA (European Fusion Development Agreement), die die europäischen ITER-Beiträge koordiniert, erhielt das Institut daher 2002 den Auftrag, die neue Strahlquelle für ITER weiterzuentwickeln. Sie sollte wesentlich robuster und billiger sein sowie - besonders wichtig für ITER - viel weniger Wartung benötigen als die herkömmlichen Bogenquellen, die in Konkurrenz zum IPP in Japan und Frankreich untersucht werden.

Ihren Namen hat die neuartige Quelle von einer Hochfrequenzwelle, die in Wasserstoffgas eingestrahlt wird und dabei einen Teil der Wasserstoffatome ionisiert. Das entstandene Plasma, eine Mischung neutraler Atome, negativer Elektronen und positiver Ionen, strömt in die eigentliche Strahlquelle, auf deren Innenwände und auf eine erste gitterförmige Elektrode. Aus einer einzelnen Elektrodenöffnung gezogen, würde der Ionenstrom nämlich durch die entstehende Raumladung begrenzt. Deshalb werden mehrere 100 Einzelstrahlen aus ebenso vielen Öffnungen einer gemeinsamen Elektrode, einem "Gitter", herausgezogen. Die fingerdicken Einzelstrahlen verschmelzen anschließend zu einem breiten Gesamtstrahl, dessen Querschnitt bei ITER knapp Türgröße besitzen wird.

Sind die Oberflächen mit geeignetem Material belegt, etwa mit Cäsium, dann können dort von den Plasmateilchen Elektronen aufgenommen werden - es entstehen negative Wasserstoffionen. Nachdem man die komplizierte Dynamik der Cäsium-Verteilung auf den Wänden ergründet hatte, kann es hier mittlerweile kontinuierlich von einem kleinen Ofen als ultradünne, etwa eine Atomlage starke Schicht aufgedampft werden. Die erzeugten negativen Ionen laufen zunächst in die falsche Richtung, zurück ins Plasma. Ionen in der Nähe des Gitters können jedoch - passend geformte Gitteröffnungen vorausgesetzt - aus dem Plasma heraus gelenkt werden. Sie werden anschließend durch das elektrische Feld eines zweiten Gitters erfasst, zum Strahl gebündelt und mit einem dritten Gitter weiter beschleunigt.

Um die unerwünschten, aber ebenfalls herausgezogenen Elektronen loszuwerden, zwingt sie ein Quermagnetfeld vor dem ersten Gitter auf winzige Kreisbahnen und behindert so ihre Bewegung in Flugrichtung der Ionen. Kleine, in das zweite Gitter eingebaute Permanent-Magnete beseitigen die Elektronen dann endgültig. Sie lenken die leichten Teilchen in spezielle Taschen, die viel schwereren Ionen fliegen nahezu unbehindert weiter. Nicht nur dieses magnetische Innenleben macht die Gitter zu technischen Meisterstücken: Hinzu kommt eine ausgefeilte Wasserkühlung, die trotz der hohen Wärmebelastung während der Heizpulse jede einzelne Öffnung auf hundertstel Millimeter relativ zu ihrem Partner im folgenden Gitter in Position hält.

Das Entwicklungsprogramm im IPP läuft parallel an drei Testständen: Am ersten werden bei kleiner Gitterfläche von rund 100 Quadratzentimetern und kurzen Pulslängen unter 10 Sekunden Stromdichte, Elektronenanteil und Gasdruck optimiert. Die Stromdichte der negativen Ionen übertrifft hier bereits die für ITER erforderlichen Werte. Im zweiten Teststand lässt sich die Gitterfläche auf 300 Quadratzentimeter ausdehnen, die Pulslänge auf eine Stunde. Dr. Speth: "Mit den bisherigen Ergebnissen - teilweise Weltrekord - hat die Hochfrequenz-Quelle des IPP bereits gute Chancen, bei ITER zum Zuge zu kommen. Bezüglich Stromdichte, Gasdruck und Elektronenanteil ist sie den konkurrierenden Bogenquellen inzwischen ebenbürtig oder sogar überlegen." Für eine endgültige Beurteilung muss - in einer dritten Testanlage, die derzeit aufgebaut wird - die Übertragbarkeit der Technologie auf ITER-Größe gezeigt werden. Die Entscheidung über eine Verwendung bei ITER wird für das kommende Frühjahr erwartet.

Isabella Milch | idw
Weitere Informationen:
http://www.ipp.mpg.de

Weitere Berichte zu: IPP ITER Ion

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher entwickeln effizientere Systeme für Brennstoffzellen und Kraft-Wärme-Kopplung
19.04.2017 | EWE-Forschungszentrum für Energietechnologie e. V.

nachricht Forscher entwickeln Elektrolyte für Redox-Flow-Batterien aus Lignin aus der Zellstoffherstellung
18.04.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten