Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Rätsel der blauen Leuchtdioden ist gelöst - Defekt behaftetes Ausgangsmaterial "schirmt" seine eigenen Fehler ab

20.09.2005


Die Energielandschaft in der "aktiven" Schicht des LED-Materials. Das Galliumnitrid entwickelt kegelförmige Ausbuchtungen rund um die Defekte. Auftreffende Elektronen können dadurch nicht "verschluckt" werden und setzen Photonen frei - die Lichtemission findet statt. TU Braunschweig - Inst. f. Angewandte Physik


Die Ausbuchtungen rund um die linienförmigen Defekte werden unter dem Transmissionselektronenmikroskop sichtbar. TU Braunschweig - Inst. f. Angewandte Physik


Blaue und grüne Leuchtdioden (LED) erobern seit mehr als zehn Jahren den Alltag. Warum sie aber funktionieren, war für Physiker und Ingenieure aus aller Welt bisher ein Rätsel. Forscher aus Braunschweig haben es jetzt gelöst. Mit ihrem Wissen können sie die Energieausbeute der hoch effizienten Lichtquellen noch mehr steigern (Physical Review Letters, 16. September 2005, Volume 95, Number 12).

... mehr zu:
»Effizienz »LED »Leuchtdiode »Lichtemission

Sie erzeugen zum Beispiel das Grün in modernen energiesparenden Verkehrsampeln und sorgen für das blaue Licht bei der Armaturenbeleuchtung von Autos: Aufgrund ihrer hohen Effizienz lassen sich immer mehr Anwendungsgebiete für blaue und grüne Leuchtdioden erschließen. In naher Zukunft werden weiße Leuchtdioden auf dieser Basis zunehmend für die Allgemeinbeleuchtung interessant, als Taschenlampe kann man sie heute schon kaufen.

Für die Experten war die hohe Effizienz dieser Leuchtdioden allerdings immer ein Rätsel. Das zugrunde liegende Material Galliumnitrid (GaN) weist nämlich eine große Zahl struktureller Defekte auf - sogar millionenfach mehr als das Material in roten Leuchtdioden mit vergleichbarer Effizienz. Bei roten LED würde eine derart hohe Zahl von Defekten jegliche Lichtemission unterdrücken.


Viele Jahre lang wurde spekuliert, dass nur eine Lokalisierung von Ladungsträgern in diesem stark inhomogenen Material die einzig vorstellbare Erklärung für die rätselhaft große Effizienz der Lichtemission sein könne. Prof. Andreas Hangleiter vom Institut für Angewandte Physik der Technischen Universität Braunschweig und sein Team haben nun das Rätsel gelöst und eine überzeugende Erklärung für das paradoxe Phänomen gefunden. Gemeinsam mit Forschern der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig konnten sie einen bisher unentdeckten Mechanismus nachweisen, mit dem sich die Defekte im Material gleichsam selbst "abschirmen" und so die Unterdrückung der Lichtemission verhindern.

"Schon seit langem können wir Galliumnitrid in den Zustand versetzen, bei dem dieses Phänomen auftritt. Dadurch wurden die LED erst möglich", erläutert Prof. Hangleiter, "doch der Weg dorthin war bisher reine Alchimie - niemand wusste, was wirklich mit dem Material geschah." Sein Forscherteam konnte unter dem Transmissionselektronenmikroskop beobachten, wie sich unter bestimmten Laborbedingungen kegelförmige Ausbuchtungen rings um die Defekte herum bildeten. Wie eine Barriere schirmen diese die Defekte ab und verhindern, dass die Lichtemission unterdrückt wird.

"Unsere Erkenntnisse machen nun eine noch bessere Ausnutzung der Galliumnitrid-basierten LED möglich", so Hangleiter. "Schon jetzt haben wir einen Rekordwert von 73 Prozent für die interne Effizienz blauer LED im Labor erreicht". Das übertrifft die Ergebnisse anderer Forschergruppen um etwa die Hälfte. Und höhere Werte sind durchaus realistisch. Die größten Verbesserungen sind künftig im grünen und im ultravioletten Spektralbereich zu erwarten. Auch für die industrielle Anwendung dürfte das ein Meilenstein sein.

Kontakt:

Prof. Dr. Andreas Hangleiter
Institut für Angewandte Physik der Technischen Universität Braunschweig
Tel.: 0531 / 391-8500
a.hangleiter@tu-braunschweig.de

Dr. Elisabeth Hoffmann | idw
Weitere Informationen:
http://www.tu-braunschweig.de
http://mammut.techphys.nat.tu-bs.de/

Weitere Berichte zu: Effizienz LED Leuchtdiode Lichtemission

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Geräteschutzschalter erfüllt NEC Class 2
19.05.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Elektronikgehäuse für Anzeigeeinheiten
19.05.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten