Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Brennstoffzelle erzeugt Strom aus Abfall

09.11.2004


Eine Brennstoffzelle, die sowohl mit Methanol als auch mit Erdgas betrieben werden kann, ist im "Innovationspark Brennstoffzelle" in Berlin in Betrieb gegangen. Das auf dem HotModule von MTU CFC Solutions basierende System liefert 250 Kilowatt Strom und 180 Kilowatt thermische Energie und bezieht das Methanol aus den Abfällen einer Mülldeponie.



Testanlagen der Schmelzkarbonatbrennstoffzelle (MCFC) vom Typ HotModule laufen bereits in mehreren deutschen Städten. Die Anlage in Berlin ist jedoch die einzige, die auch mit Methanol betrieben werden kann. Foto: MTU



Mit seinen HotModule--Schmelzkarbonatbrennstoffzellen (MCFC) steht MTU CFC Solutions kurz vor der Marktreife. Nach Angaben der DaimlerChrysler-Tochter soll 2006 die Serienproduktion anlaufen. Um die Praxistauglichkeit der Technologie zu erproben, hat das Unternehmen bisher mehr als ein Dutzend Testanlagen gebaut und in Betrieb genommen.

Neu an dem in Berlin installierten System ist der Betrieb mit Methanol. Der flüssige Brennstoff stammt aus der Berliner Deponie "Schwarze Pumpe". Dort wird aus organischen Abfällen Synthesegas gewonnen. Aus dieser Mischung aus Kohlenmonoxid und Wasserstoff lässt sich in einer Synthesereaktion Methanol herstellen. Das Methanol wird in Lastwagen zur Brennstoffzelle in der Eichenstraße im Stadtteil Treptow transportiert und dort in einem 25 Kubikmeter fassenden Tank zwischengelagert.

Bei einem Betrieb der HotModule-Brennstoffzelle mit Erdgas wird der Brennstoff in einer Vorreformierungsstufe erhitzt, entschwefelt und befeuchtet. So kann in der Brennstoffzelle die eigentliche Reformierung ablaufen, bei der der Wasserstoff von der Verbindung abgetrennt wird. Für den Betrieb mit Methanol muss jedoch eine spezielle Vorreformierungsstufe vorgeschaltet werden, das so genannte Methanol Rack. Der Grund: Gelangt Methanol in den Erdgas-Vorreformer, spaltet sich Wasserstoff bereits hier ab. Daher fällt die Reformierung in der Brennstoffzelle selbst weg. Dies führt dazu, dass die Brennstoffzelle überhitzt, denn die Reformierungsreaktion nimmt Wärmeenergie auf.

Mit dem Methanol Rack wird diese Überhitzung dadurch verhindert, dass das Methanol mit Luft vorgekühlt und in einer chemischen Reaktion in Methan verwandelt wird, den Hauptbestandteil von Erdgas. So kann der eigentliche Reformierungsprozess in der Zelle weiterhin stattfinden und eine Überhitzung der Stacks verhindert werden.

Die Anlage kann mit Methanol, mit Erdgas oder mit beiden Brennstoffen gleichzeitig betrieben werden. Der erzeugte Strom wird ins öffentliche Netz eingespeist, die nicht benötigte Wärme gelangt in ein Fernwärmenetz. Die Möglichkeit, auch die von der Brennstoffzelle erzeugte Wärme optimal zu nutzen ist auch der Grund, weshalb die Anlage mitten in Berlin und nicht in direkter Nachbarschaft zur Abfalldeponie steht.

Mit der Anlage wollen die Betreiber – die Unternehmen Vattenfall Europe, E.ON, Bewag und das Bundesministerium für Wirtschaft und Arbeit (BMWA) – die Alltagstauglichkeit des Systems mit verschiedenen Brennstoffen erproben und den Einsatz von Deponiegas zur Stromerzeugung fördern. Die etwa 4,5 Millionen Euro teure Anlage soll mindestens drei Jahre laufen.

Ulrich Dewald | Initiative Brennstoffzelle
Weitere Informationen:
http://www.initiative-brennstoffzelle.de

Weitere Berichte zu: Brennstoff Brennstoffzelle Erdgas Methanol

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics