Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zündende Ideen für die turbulente Verbrennung

08.11.2002


Zweierlei ist zu bedenken, seit der Mensch das Feuer nutzt: dass der Brennstoff ausreicht und keine Vergiftung auftritt. Mit Holzsammeln und einem guten Rauchabzug sind moderne technische Verbrennungsprozesse nicht mehr beherrschbar, doch Sparsamkeit im Verbrauch und Schadstoffvermeidung gelten mehr denn je als wichtige Richtlinien. Seit Oktober 2002 ist dies die Thematik des neuen Bayerischen Forschungsverbunds für Turbulente Verbrennung (FORTVER), an dem die Thermodynamik-Lehrstühle der Universitäten Erlangen-Nürnberg und Bayreuth sowie der TU München beteiligt sind. Das Bayerische Staatministerium für Wissenschaft, Forschung und Kunst hat zunächst für drei Jahre rund 1,9 Millionen Euro für die Grundlagenforschungen zu komplexen Verbrennungsprozessen und deren Anwendung bereitgestellt.



Turbulente Verbrennung hält, was ihr Name verspricht. In den Brennkammern geht es höchst dynamisch zu. Gase und Flüssigkeiten wirbeln durcheinander, Dichte und Mischungsverhältnisse ändern sich unaufhörlich, Reaktionen laufen in Blitzesschnelle ab. Selbst Großrechner können solche Vorgänge noch nicht zufriedenstellend nachvollziehen. Die Berechnungen wären jedoch notwendig, um die Verbrennung gezielter zu steuern. Moderne Gasturbinen, Industriefeuerungsanlagen oder Automotoren könnten dann optimal verbrauchs- und schadstoffarm betrieben werden.



Hier setzt der Forschungsverbund FORTVER mit sieben Arbeitspaketen an. Zum einen sollen neue optische und lasergestützte Messmethoden erarbeitet und eingesetzt werden, auf deren Ergebnisse exaktere Flammenmodelle im Computer aufbauen können. Zum anderen sollen neuartige Berechnungsansätze, die zur numerischen Strömungssimulation entwickelt wurden, auf die um ein Vielfaches komplexeren Vorgänge der Gemischbildung und Verbrennung übertragen werden. Die Fachleute sprechen von der instationären "Large-Eddy-Simulation", die eine bessere Raum-Zeit-Auflösung erlaubt, so dass die turbulenten Prozesse übersichtlicher werden. Es ist geplant, dass der Verbund dazu den Bundeshöchstleistungsrechner des Leibniz-Rechenzentrums in München nutzen kann. Ohne eine solch hohe Rechenkapazität wäre die Simulation nicht durchführbar.

Am Lehrstuhl für Technische Thermodynamik der Universität Erlangen-Nürnberg sind Prof. Dr.-Ing. Alfred Leipertz und Priv.-Doz. Dr. Friedrich Dinkelacker mit zwei Arbeitspaketen an FORTVER beteiligt. Von der Organisation im Verbund wird erwartet, dass der Funke aus der Grundlagenforschung unverzüglich in die industrielle Anwendung überspringt. Die Förderung des Verbunds ist eine gezielte Investition sowohl zugunsten des Forschungs- und Technologiestandorts Bayern als auch zugunsten der Ressourcenschonung und einer langfristig lebenswerten Umwelt.

Weitere Informationen
Prof. Dr. Alfred Leipertz
Lehrstuhl für Technische Thermodynamik
Tel.: 09131/85 -29900
sek@ltt.uni-erlangen.de

Gertraud Pickel | idw

Weitere Berichte zu: FORTVER Grundlagenforschung Verbrennung

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Tierschutz auf hoher See
17.01.2017 | Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg

nachricht Weltweit erste Solarstraße in Frankreich eingeweiht
16.01.2017 | Wissenschaftliche Abteilung, Französische Botschaft in der Bundesrepublik Deutschland

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau