Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bayreuther Wissenschaftler entwickeln umweltgerechte Produktionsprozesse

05.02.2014
Die Geometrie macht´s oder Wie Bayreuther Wissenschaftler mit einer innovativen Schneidengeometrie von Fräswerkzeugen Energie einsparen und den Ausstoß von Kohlendioxid reduzieren

Am neuen Forschungsprojekt sind die Fraunhofer-Projektgruppe Prozessinnovation, angesiedelt am Lehrstuhl für Umweltgerechte Produktionstechnik der Fakultät für Ingenieurwissenschaften der Universität Bayreuth, sowie sieben bayerische Unternehmen beteiligt. Das Projekt wird von der Bayerischen Forschungsstiftung gefördert.


Gerade das Fräsen großer Innenkonturen ist sehr energieintensiv
Foto © Universität Bayreuth


Prozess- und Energieverbrauchsaufnahme bei einem Anwenderunternehmen
Foto © Universität Bayreuth

Einen wertvollen Beitrag zur Einsparung von elektrischer Energie in Produktionsprozessen und einer damit einhergehenden Reduzierung von entstehendem Kohlendioxid leistet jetzt ein neues Forschungsprojekt, an dem die Fraunhofer-Projektgruppe Prozessinnovation – angesiedelt am Lehrstuhl für Umweltgerechte Produktionstechnik der Fakultät für Ingenieurwissenschaften der Universität Bayreuth – sowie sieben bayerische Unternehmen beteiligt sind.

Gefördert von der Bayerischen Forschungsstiftung werden Wissenschaftler und Ingenieure gemeinsam mit ihren bayerischen Technologie- und Anwendungspartnern eine innovative Schneidengeometrie für Fräswerkzeuge entwickeln, die im Vergleich zu herkömmlichen Fräswerkzeugen elektrische Energie einsparen und den Ausstoß von Kohlendioxid reduzieren. Diese Fräswerkzeuge, sog. Vollhartmetall-Schaftfräser, werden heutzutage in fast allen Produktionsprozessen angewendet, in denen Bauteile durch Fräsprozesse hergestellt werden.

"Untersuchungen zufolge emittiert eine durchschnittliche Fräsmaschine indirekt jährlich so viel Kohlendioxid wie zehn Mittelklasse-PKW. Unsere sieben am Forschungsprojekt beteiligten Firmen verfügen über rund 50 Fräsmaschinen. Wenn wir 60 Sekunden als Mittel für die Bearbeitung eines Frästeiles zugrunde legen, kann nach unserer Einschätzung an einer einzelnen Maschine, bei 90-prozentiger Auslastung und im Zweischicht-Betrieb, der Ausstoß von Kohlendioxid um ca. 1,7 Tonnen pro Jahr verringert werden. Bei 50 Fräsmaschinen sind das 85 Tonnen!", erläutert Hans-Henrik Westermann, der als Teamleiter der Fraunhofer-Projektgruppe Prozessinnovation das Forschungsprojekt leitet.

Fraunhofer-Projektgruppe Prozessinnovation

Die Fraunhofer-Projektgruppe Prozessinnovation am Lehrstuhl für Umweltgerechte Produktionstechnik der Universität Bayreuth ist ein anerkannter und gefragter Partner, wenn es um Forschung und Innovation im Bereich der energie- und ressourceneffizienten Produktion geht. "Gerade in diesem Bereich sind wir in den vergangenen Jahren wirklich stark geworden und haben uns ein umfassendes Know-how erarbeitet", erklärt Prof. Dr.-Ing. Rolf Steinhilper, Lehrstuhlinhaber für Umweltgerechte Produktionstechnik. "Das neue Forschungsprojekt baut auf den eigenen wissenschaftlichen Kompetenzen auf und greift darüber hinaus auch wichtige Erkenntnisse aus anderen Projekten wie beispielsweise der Green Factory Bavaria auf", fügt Dr.-Ing. Stefan Freiberger hinzu, der als Leitender Ingenieur am Lehrstuhl am Forschungsprojekt beteiligt ist.

Sieben Anwender- und Partnerunternehmen aus Bayern

Auf der Seite der Anwender- und Partnerunternehmen kommt der Firma Maier Präzisionswerkzeuge GmbH aus Salching / Niederbayern eine tragende Rolle zu. Mit umfangreichem technologischen Sachverstand und großer Innovationskraft arbeitet sie am Projekt mit. Als zweiter wichtiger Technologiepartner ist die Firma RSB Schleifdienst GmbH aus Dörfles-Esbach / Franken am Projekt beteiligt, die als Mitglied im Fachverband deutscher Präzisionswerkzeugschleifer ihr Wissen aus dem Bereich des Nachschliffs von Fräswerkzeugen einbringt.

"Wir freuen uns, dass wir beide Firmen als Technologiepartner für unser Forschungsprojekt gewinnen konnten", sagt Hans-Henrik Westermann und fährt fort: "Durch Simulations- und Versuchsreihen wollen wir die Geometrie der Werkzeugschneide so optimieren, dass für die mechanische Bearbeitung Energieeinsparungen im zweistelligen Prozentbereich möglich werden".

Auf den Erfolg des Forschungsprojekts 'Entwicklung einer energieoptimierten Schneidengeometrie' setzen auch die fünf anderen kleinen und mittelständischen Unternehmen aus Bayern, die am Projekt beteiligt sind. Im Bereich der Fertigung sind die Margen meist gering. Daher wird die Beherrschung des Zeit- und Kostendrucks für kleine und mittlere Unternehmen zum kritischen Erfolgsfaktor. Das Forschungsprojekt ‚Entwicklung einer energieoptimierten Schneidengeometrie‘ wird einen wertvollen Beitrag leisten, die Energieeffizienz und damit auch die Wettbewerbsfähigkeit dieser Unternehmen zu verbessern.

Für weitere Informationen steht gern zur Verfügung:

Hans-Henrik Westermann
Wissenschaftlicher Mitarbeiter am Lehrstuhl für Umweltgerechte Produktionstechnik, Teamleiter der Fraunhofer-Projektgruppe Prozessinnovation, Leiter des Forschungsprojektes 'Entwicklung einer energieoptimierten Schneidengeometrie'
Fakultät für Ingenieurwissenschaften
Telefon (+49) 0921 / 55-7365
E-Mail hans-henrik.westermann@uni-bayreuth.de
Universität Bayreuth
Universitätsstraße 30
D-95447 Bayreuth

Brigitte Kohlberg | idw
Weitere Informationen:
http://www.lup.uni-bayreuth.de
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics